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ABSTRACT1 

 
Composites present additional challenges for inspection due to their anisotropy, 

the conductivity of the fibers, the insulating properties of the matrix, and the fact 
that damage often occurs beneath the visible surface. This paper addresses the 
characterization of damage within composite materials, specifically for structural 
health monitoring (SHM). The presented research utilized Lamb wave testing 
coupled with pattern recognition methods, with the goal of providing the presence, 
type, and severity of damage with a high degree of confidence. An adaptive 
methodology is also presented to accommodate changes in structural response that 
are not attributable to damage, such as ageing, maintenance and repair. The results 
have shown that PR methods can be used to successfully characterize damage in 
composites, with results that would improve further with additional training data. 

 
 

INTRODUCTION 
 

 Structural Health Monitoring (SHM) implies the incorporation of a non-
destructive evaluation system into a structure to provide continuous remote 
monitoring for damage, with the goal of improved safety and reduced life-cycle 
costs. Lamb wave methods have been proven a reliable technique to collect 
valuable information about the state of damage within a structure, and several 
investigators have successfully used Lamb waves to determine the location of 
damage within composite plates [1-5]. Traditional algorithms are susceptible to 
rising false positive rates over time due to ageing materials, scheduled maintenance 
procedures and new structural repairs. In addition, slight differences between 
aircraft in a fleet, such as those due to sensor placement, bondline preparation and 
manufacturing tolerances, could have a significant adverse effect on accuracy as 
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well. Ideally, these issues could be overcome by revising algorithms, manually 
updating threshold levels or re-training software for individual aircrafts 
continuously over time, however this solution is logistically impractical as well as 
extremely time consuming, potentially negating the original benefits of deploying 
an SHM system. Furthermore, tailored changes to algorithms could invalidate or at 
lease complicate the certification of an SHM system. This paper discusses an 
adaptive SHM methodology to accommodate perturbations in structural response 
not attributable to damage, while maintaining or accounting for algorithm accuracy.  
The objective of this work was to develop an analytical methodology that uses 
Lamb waves to characterize damage states in composite materials, with the goal of 
predicting the presence, type and severity with a high degree of confidence.   
 
 
DEFINING DAMAGE IN COMPOSITE MATERIALS 

 
There are several challenges in detecting damage in composite materials. Ideally, 

a simple pristine or damaged categorization would reside at the top level, however 
taking a micromechanics view, composite is fabricated with damage. Those 
microscopic flaws grow slowly over time, and can be greatly accelerated by events 
such as overloads or impacts, until a critical damage size is achieved [6]. Therefore 
the concept of a damage threshold must be introduced. At some level of detectable 
flaw size, the structure must be labeled as “damaged”. In composite materials, 
damage modes of interest include delamination, matrix microcracks, fiber fracture, 
swelling or brooming, and disbonding from secondary structure. Using one or two 
features to distinguish between these modes may not be feasible, as they may not be 
linearly separable. While it may be possible to differentiate between damage and no 
damage, or between 2 discrete damage modes with limited features, it is not 
possible to separate the entire mode space for composite materials with only 2 
features to classify. It becomes necessary to extract several feature sets to allow 
multi-dimensional classification of damage modes. Using a very large set of 
features, however, may lead to the problems of redundancy and computational 
inefficiencies. In that case, feature–reduction techniques need to be employed to 
reduce dimensionality. Finally appropriate pattern recognition method must be 
chosen and trained using this feature data to successfully characterize the damage.  
 
 
TRADITIONAL METHODOLOGY FOR SHM ALGORITHMS 
 

The Standard Training Flowchart, seen in Figure 1, indicates the steps 
necessary to calibrate a generic SHM algorithm, essentially characterizing the 
definitions for various states. Generally, training input consisting of data linked to 
complementary damage state is iterated through a series of signal processing steps 
to establish the training output parameters to be locked and used for testing. A 
separate set of validation input is also utilized to establish state confidence levels. 
The Standard Testing Flowchart, seen in Figure 2, is executed to determine the 
present state of a structure given the training output parameters. Beyond the 
acquired test data, only an undamaged baseline from the test structure is required to 
apply the previously developed algorithms and calculate prediction accuracy. 
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Figure 1:  Training Flowchart used to derive optimized damage characterization algorithm 
 

Training Flowchart Input  
Training Input – voltage versus time data linked to damage presence, type, size and location info 
Validation Input – separate set identical to training input used to validate generated algorithms  
 
Iterative Functional Blockset 
Signal Condition – signal processing tools to remove unwanted artifacts, filter and de-noise data 
Feature Extraction –  extracts quantifiable features from time, frequency and energy domains to 

characterize signal (max amplitude, arrival time, peak frequency, etc.) 
Feature Selection – most discriminative features are down-selected, such as those that are most 

consistent within a particular class and most variable between classes 
Feature Reduction – techniques to reduce the dimensionality of the selected features  
Pattern Recognition – models used to associate test data with a pre-trained classification 
Algorithm Development – equations to determine distance to damage based on time of flight 
 
Training Output  
Feature Parameters – designates selected features to extract and appropriate reductions 
Training Baseline – defines statistical average for all undamaged structure 
Recognition Dictionary – defines pattern recognition state machines 
Localization Algorithm – compiled algorithm to determine distance to damage 
Confusion Matrix – table of statistical accuracies of algorithms applied to validation data 
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Testing Flowchart Input 
Data Acquisition – raw voltage versus time data is acquired from sensors 
Testing Baseline – undamaged baseline signal taken from test structure prior to testing 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
 
Functional Blockset 
Signal Condition – filtering and denoising pre-set in Training Flowchart 
Feature Extraction – extraction of selected features optimized in Training Flowchart 
Feature Reduction – reduction of feature dimensionality pre-set by Training Flowchart 
Pattern Recognition – using the recognition dictionary from the Training Flowchart 
Localization Algorithm – using the algorithms generated in the Training Flowchart 
Confusion Matrix – matrix generated using validation input is used to assign confidence levels 
 
Testing Output 
Presence of Damage – pattern recognition determines presence of damage above threshold value 
Type of Damage – pattern recognition determines type of damage or “unknown” class 
Size of Damage – pattern recognition determines severity of damage within pre-set ranges 
Location of Damage – time of flight algorithm determines approximate location of damage 
Confidence Levels – validated confusion matrix yields confidence levels for each damage state 

Signal 
Condition 

Testing 
Baseline 



Signal Conditioning 
 
Signal conditioning is employed to de-noise the acquired signal from unwanted 

frequency content. Noise can generally be described by 2 categories: coherent and 
incoherent. Incoherent noise is typically referred to as “white noise,” and can be 
easily removed through averaging.  The source of coherent noise is often more 
challenging to discover, however can originate from a multitude of EMI sources. 
While more challenging to identify, coherent noise is also relatively easily extracted 
within the frequency domain, as long as close attention is paid to not disturbing the 
phase of the signal. Once the data has been conditioned, another important 
component of the pre-processing stage is the removal of unwanted artifacts, which 
could include boundary conditions as well as pre-existing conditions. This is 
achieved by a variety of techniques in the time, frequency and/or wavelet domains, 
with the simple goal of eliminating pre-existing characteristics of the signal, 
typically by using baseline measurements. 

 
Feature Extraction 
 

To perform pattern classification, a set of discriminative features needs to be 
obtained from the data. Within the Lamb wave results investigated during the 
present research, there are 3 main easily identifiable domains from which these 
features can be extracted: Time, Frequency and Energy. The Time Domain features 
are amongst the most commonly used in analysis, and include “time of flight” 
(TOF) and time position of the maximum and subsequent secondary peaks. These 
features can be observed from the raw data itself with little processing.  Frequency 
Domain features include the maximum value of power spectral density (PSD), 
general distribution of power at various frequencies, shift in frequency response 
from baseline, as well as the actual frequency and phase at this value. Frequency 
features can be extracted by using both Fourier transforms as well as Wavelet 
decomposition, where the effectiveness depends on the shape of the excitation 
signal. Finally, the Energy Domain features include the mean and standard 
deviation for the original signal amplitude as well as the 1st and 2nd differences of 
the signal amplitude. Other features of this domain include the total integrated 
signal energy, the maximum peak amplitude and the amplitude of other 
representative envelope locations. These features are extracted through a 
combination of time and frequency-based functions. 

 
Feature Selection 

 
Once a feature set is identified, the next step is to select from amongst this set 

which features are most representative and discriminative. Using a larger feature set 
for analysis may not necessarily imply better classification. Often greater number of 
features requires larger training data sets for error convergence and may otherwise 
degrade the performance of the classification method. There are many ways to 
select features, which can produce results with varying accuracy and efficiency. The 
most traditional method is a balanced one-way Analysis of Variances (ANOVA) 
[7]. This is accomplished by simply comparing the means of two or more columns 
of data amongst various training states and selecting features based on the 



probability value of the null hypothesis that a given feature remains same for all 
categories of damaged and undamaged plates. Some selected features in the present 
case were: total energy, frequency and phase corresponding to max power spectral 
density and time of reflection. 

During this investigation a more efficient feature reduction methods was also 
employed, Principal Components Analysis (PCA) [8]. PCA is a multi-disciplinary 
technique used for reducing dimensionality of a given dataset. In this technique, the 
natural coordinate systems of the data, such as voltage versus time or intensity 
versus frequency, are transformed such that greatest variance is captured by the first 
coordinate (first principal component), the second greatest variance by the second 
coordinate, etc.  Principal components that encapsulate most variability can then be 
selected and be used to reconstruct data with low-order dimensionality, while the 
remaining components are discarded. In the present work, PCA was used to 
significantly reduce the raw time-series data consisting of 1000 data points by 
choosing the first six principal components, which captured more than 99% of the 
data variance. The first step of PCA is to compute the co-variance of n-dimensional 
data X (eq. 1).  This is followed by finding the eigenvectors (U) and eigenvalues of 
the co-variance matrix (λ) (eq. 2,3). Next the n eigenvectors correspond to a new set 
of orthogonal vectors and the corresponding eigenvalue is proportional to the 
variance captured by projecting along that vector. Finally the eigenvalues are 
ordered, and the first k vectors are chosen to capture the desired variance (eq. 4,5) 
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Pattern Recognition (PR) 

 
PR algorithms are essentially a collection of mathematical models that can be 

used to associate a set of test data with one of several pre-designated categories. 
Some of these methods are purely statically-based, and others have learning 
capabilities, however all PR methods have a requirement for training sets to define 
a “profile” for each category. Three different pattern recognition techniques were 
investigated during the course of the present research to evaluate their effectiveness 
with regards to characterizing damage within the presented methodology: K-
Nearest Neighbor, Neural Networks and Decision Tree. Each method was 
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implemented independently, as well as in conjunction with combinations of other 
methods bound by simple logic (e.g. 2 of 3 must agree, or all must agree).   
 
K-NEAREST NEIGHBOR (KNN) 

KNN is a supervised learning algorithm, in which the category of new data set is 
determined based on its closest neighbor. The simplest version of KNN is where 
K=1, and a data set is assigned to the group of the training set that most closely 
matches, determined by similarity of features or principal components. As K 
increases, the data set is assigned to the group of the majority category of K-nearest 
neighbors, as calculated by measuring similarity; here Euclidean distance was used. 
This is not a true learning algorithm but based on memory where a new instance is 
determined by input features and training samples. Advantages of KNN include that 
it is analytically tractable, simple to implement, it uses local information that can 
yield highly adaptive behavior and it lends itself very easily to parallel 
implementations. The disadvantages include large storage requirements and 
computationally intensive recall (both of which get worse as K increases) as well as 
its sensitivity to noise in the data (particularly at low K values) [9]. 
 
NEURAL NETWORK 

This is a machine-learning technique that uses weighted links. It simulates a 
network of communicating nerve cells. Input/output data is utilized to train the 
network and the network links are modified to capture the knowledge, so that after 
it has been adequately trained, it can be used to classify new input. The advantages 
of this type of algorithm include applicability to multivariate non-linear problems 
and parallel implementation, there is no need to assume an underlying data 
distribution (statistical modeling) and it has robustness towards noisy data as this it 
is inherently well suited for sensorial data processing. The disadvantages include 
the fact that minimizing overfitting requires a great deal of computational effort, the 
model tends to be black box or input/output table without analytical basis and there 
is a need for a large training sets (typically exponentially more sets than defined 
states) [10]. 
 
 DECISION TREE 

This method is essentially a series of questions and answers, similar to a “choose 
your own adventure” approach.  Following the metaphor, data enters through the 
“trunk” of the decision tree, with each “branch” representing conjunctions of 
features that lead to an ultimate classification, or “leaf.” The weight of each 
decision is implicit in the hierarchy of the branch structure. Several tree structures 
can be also be assembled into “forest” by using multiple training sets, in order to 
achieve a statistical consensus. The advantages of this method include that it 
requires the smallest volume of data, it can accommodate missing features, it has an 
in-built feature selection and weighing mechanism, the tree structure inference 
builds domain knowledge and it is nonparametric or "distribution free." The 
disadvantages include the fact that unstable decision trees may be produced, that 
data is split only by one variable at a time, the rules deduced may be complex trees, 
and trees may be overfitted [11]. 



EXPERIMENTAL PROCEDURES 
 
Experiments were performed using a series of nine 0.1” thick, quasi-isotropic 

graphite/epoxy laminates, cut to 11.75” square. Each plate contained 2 bonded 
sensor nodes placed symmetrically along the diagonal [12]. Three types of damage 
were investigated – impact, hole and delamination. The impact setup consisted of a 
5 lbs weight with a ½” diameter ball attached to the bottom. Delamination area and 
crack lengths as a function of drop-height were predicted based on analytical work 
found in the literature [13]. Next center drilled holes were cut into the laminates 
using drill bits and composite machining methods. Last, corner delaminations were 
cut into the center ply of the laminates in the same of isosceles triangles using a 
box-cutter. For each specimen, 100 Lamb wave pulse-echo tests were performed at 
100 kHz per node prior to any damage introduction to be used as baselines [14-16]. 
Then damage was introduced at each level, 100 more pulse-echo tests were 
performed, followed by the next progressive damage introduction. Three plates 
were tested for each type totaling 9,000 data sets. The test matrix is seen in Table 1. 

 

 # Plates Damage Type Damage Severity 

3 Impact (5 lbs dropped spherical weight) 4”, 8”, 16”, 32” 

3 Hole (center drilled) 1/32”, 1/8”, ¼”, ½”  

3 Delamination (corner cut isosceles triangle) ¼”, ½”, 1”, 1.5” 

 
 
RESULTS 

 
The test matrix presented in the previous section was executed, and all of the 

experimental results were accumulated on a PC. Upon visual inspection, raw 
voltage versus time results for the undamaged versus damage signals at all levels of 
severity are very similar making it difficult to discern differences in the time 
domain. A preliminary analysis was performed using traditional time-frequency 
based algorithms, which yielded decent results, however with undesirable accuracy 
levels. Subsequently, a PCA-based approach was used implemented that yielded 
much improved results.  The following sections describe the results for both 
approaches, as well as presenting the overall “confusion matrix,” or table exhibiting 
the statistical accuracies for the damage predictions as compared to the actual plate 
configurations. 

 
Time-Frequency Results 

 
Sixteen Time-Domain and Frequency-Domain features were calculated from the 

collected signal and ANOVA tests was performed on these features to determine 
their capability as a discriminative feature. A very small P-value indicates that for a 
given features, it value across various classes was significantly different to 
distinguish between the classes. It was found that most of the features passed the 

Table 1. Test Matrix 



ANOVA test thereby indicating that they were strong features to distinguish 
between damaged and undamaged structures as well as identify severity of damage. 
The cluster diagram in Figure 3 shows the ability of time and frequency based 
features in identifying damage. Here, using only the first three features that were 
most discriminative, data from an undamaged plate and those of several levels of 
damage severity have been plotted in 3-dimensions. It can be seen that though the 
classes can be separated, the cluster boundaries are diffused instead of crisp, which 
would lead lower pattern recognition accuracies.  

PCA Results 
 
Similar to the previous approach, PCA was also used to extract features as an 

alternative to the traditional time/frequency resultants. Each data set contained 800 
points which were treated as 800 dimensions, and using the previously presented 
method they were transformed into 800 new dimensions which were the 
eigenvectors of covariance matrix of the input data. These 800 transformed vectors 
were used to generate the principal components. The top 20 principal components 
that contributed to nearly 70% of the data variance were then selected. These 20 
components were the new features that were passed into the pattern recognition 
methods. The cluster diagram in Figure 4 demonstrates the ability of PCA to assist 
in the identification of damage. Here, using only the first three principal 
components, data from an undamaged plate and those of several levels of damage 
severity have been plotted in 3-dimensions. It can be seen that not only all the 
classes can be clearly separated, but clearly separated with a greatly reduced 
dimensionality. PCA proved to increase both the efficiency and accuracy of the 
pattern recognition methods. 

 
Overall Results 

 
Once the previous steps of the damage detection methodology—signal 

conditioning, feature extraction and feature selection—had been completed, the 
resulting signal features were used within several combinations of the PR schemes 
previously described. For each damage type, a single sensor node on single plate 
was designated as the “training node,” and all data collected from this node before 
damage as well as at each level of damage severity was used to train the PR 
algorithm.  The other node on the same plate as the training node, as well as all of 
the other nodes on the other plates were all “testing nodes,” and used to collect 
experimental data for predictions. All of the PR results provided decent accuracy, 
however the most reliable method determined in the present study was using KNN 
alone. The KNN parameters were optimized using Monte Carlo simulation to obtain 
the best mean accuracy using the collected data. The master confusion matrix in 
Table 2 presents the best results using the optimized KNN algorithm, displaying the 
percentage predicted severity of damage versus actual severity of damage combined 
for all damage types. Horizontal lines in the matrix sum to total 100% of the actual 
severity levels (e.g. the second line would be read as 86% of the 1/32” drilled holes 
were correctly diagnosed and the remaining 14% were predicted to be 1/8” holes). 
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Figure 3:  Time/frequency cluster plot for data from specimens with drilled holes 

Figure 4: PCA cluster plot for representative data from specimens with drilled holes 
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ADAPTIVE METHODOLGY FOR SHM ALGORITHMS 
 

The Adaptive Training Flowchart, seen in Figure 5, is the main departure from 
traditional SHM architectures. To compensate for small perturbations in signals, 
adaptation modules at the signal and feature level are established using perturbed 
training input and baseline signals iterated through the Standard Testing Flowchart, 
with the goal of minimizing impact on the algorithm accuracy. These adaptation 
parameters are also locked to be used for adaptive testing along with updated 
confidence levels for each state as a function of perturbation level. The Adaptive 
Testing Flowchart, seen in Figure 6, is executed similarly to the standard test 
procedure to determine the state of damage including the adaptation parameters.  
Here, beyond the original baseline, a signal from a future “known good state” is 
used to accommodate signal perturbations through the adaptation modules. 
 If the original baseline signals obtained from a pristine structure is BO and an 
updated baseline signal from the same structure obtained at a later time is 
designated BN, then the main function of the adaptive compensation modules can be 
viewed as transforming BN to BN’ such that BN’ ≅ BO. This takes place with the two 
underlying assumptions that BN is collected within a known no-damage condition, 
and that the differences between BO and BN are within some tolerable threshold. At 
the signal level adaptation is an extension of the signal conditioning step, where 
parameters for BN are determined with reference to the original baseline BO. In this 
step signal normalization NNN BTB *'=  was achieved using the normalizing vector: 

)max(
1

peaktopeakN
N B

T
−−−

=  

At the feature level, the BN feature vector FBN is transformed to FBN’ by a series of 
transformation vectors, RT  for Rotation, ST  for Scaling, and RT  for Translation: 

BNRTSBN FTTTF *)**('=  
Transformation vectors are computed using the following optimization relations, 
where FB0 is the feature vector derived from the original baseline signal BO. 

)min( 0 BNxB FTF − , },,{ RTSX ∈  
 
 
SIMULATED VALIDATION OF ADAPTIVE METHODOLGY  
 

An application of this methodology is presented using the data collected 
previously. To achieve first-order validation of this adaptive methodology, 
simulated perturbations were introduced into the experimentally collected baseline 
and test signals, and subsequently the Adaptive Training and Testing Flowcharts 
were executed. First, a time delay between 0-100µs was introduced, representing a 
change introduced by a repair moving a boundary condition. Next, a uniform 
amplitude attenuation between 0-10% was introduced, replicating a degraded sensor 
bondline. Last, a central frequency shift between 0-10% was introduced, as seen in 
ageing or from microcracks reducing the bulk material modulus within a design 
allowable range. Results demonstrating the effect of adaptation on the accuracy of 
predicting damage presence for perturbed signals are presented in Figure 7. 
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Figure 5:  Adaptive Training Flowchart  
 

Adaptive Training Flowchart Input 
Adaptation Input – similar in format to training data, includes multiple sets of perturbations 
Adaptation Baseline – set of perturbed baselines that complement the Adaptation Input 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
 
Standard Functional Blockset 
Signal Condition – filtering and denoising pre-set in Training Flowchart 
Feature Extraction – extraction of selected features optimized in Training Flowchart 
Feature Reduction – reduction of feature dimensionality pre-set by Training Flowchart 
Pattern Recognition – using the recognition dictionary from the Training Flowchart 
Localization Algorithm – using the algorithms generated in the Training Flowchart 
 
Iterative Adaptive Blockset 
Signal Adaptation – signal is manipulated to resolve perturbations from training baseline 
Feature Adaptation – features are manipulated to resolve perturbations from training baseline 
 
Adaptation Output 
Adaptation Parameters – optimized parameters for signal and feature adaptation 
Adaptation Matrix – table of statistical accuracies of algorithms applied to adaptation data 

Adaptation 
Parameters

Adaptation 
Baseline 



 

Figure 6:  Adaptive Testing Flowchart  
 

Adaptive Testing Flowchart Input 
Data Acquisition – raw voltage versus time data is acquired from sensors 
Testing Baseline – original undamaged baseline signal taken from test structure prior to testing 
Adaptation Baseline – perturbed baseline signal to be used for adaptive algorithms 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
Adaptation Output – parameters generated by Adaptive Training Flowchart govern adaptation 
 
Standard Functional Blockset 
Signal Condition, Feature Extraction & Reduction, Pattern Recognition and Localization 
Algorithm all remain locked as pre-set in Training Flowchart 
 
Iterative Adaptive Blockset 
Signal & Feature Adaptation remain locked as pre-set in Adaptive Training Flowchart 
Adaptation Matrix – confusion matrix from Adaptation Output used to assign confidence levels  
 
Testing Output 
Damage Presence, Type, Size & Location – from pattern recognition & localization algorithms  
Confidence Levels – adaptation confusion matrix yields confidence levels for each damage state 
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Figure 7:  Results demonstrating effect of simulated signal perturbation on a pattern recognition 
algorithm with & without adaptive compensation:  A) time, B) energy, & C) frequency domains 
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CONCLUSIONS 
 

The results for the standard application of pattern recognition-based damage 
characterization have been very successful. For determination of presence of 
damage, this methodology has predicted with 100% accuracy without any false 
positives or missed damage. For determination of type of damage, this methodology 
has also predicted with 100% accuracy without any misclassifications. Finally, for 
determination of severity of damage, this method has predicted the exact level 77% 
correct, and when including the directly adjacent severity levels, this accuracy 
improves to 99.9%. Alternatively, these improved results could be achieved by 
intelligently selecting the boundaries for severity levels through additional 
experimentation and iterative refinement. Overall these results would be sufficient 
for a technician to be able to make a knowledgeable decision about the necessity to 
perform a repair. Of particular significance, these results were achieved using 
training data from one plate and testing data from a separate plate. This verifies the 
ability of this methodology to account for slight variability in sensor fabrication and 
placement, as well as accommodating “real” uncontrollable damage types such as 
delamination and impact.  

Beyond the standard PR-application, this paper presents an adaptive SHM 
methodology, designed to maintain damage detection algorithm accuracy while 
accommodating signal perturbations caused by ageing materials, scheduled 
maintenance procedures and new structural repairs. The methodology consists of 
three flowcharts for training of standard algorithms, training of the adaptation 
modules and testing using these trained parameters. Adaptation modules are 
inserted at both the signal and feature level to transform the test signal based on 
differences between original and present baseline signals.  Results are presented for 
detecting the presence of damage in composite plates with simulated perturbations 
of up to 10% in the signal time, energy and frequency domains. The standard 
pattern recognition algorithm exhibited reduced accuracy due to the perturbations, 
which further decreased as greater signal change, while the algorithm with adaptive 
compensation maintained accuracy by incorporating the new baseline signal. The 
present research was successful in demonstrating the feasibility of using adaptive 
modules to compensate for signal perturbations not attributable to damage, however 
work remains to fully develop this methodology for commercial applications. 
Future work will aim at conducting experiments to optimize the methodology, 
examine effects of signal perturbation on damage type, severity and location, as 
well as validation beyond pure simulation for built-up structures. 
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