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ABSTRACT1 

 
Structural Health Monitoring (SHM) systems are susceptible to rising false 

positive rates over time due to ageing materials, scheduled maintenance procedures 
and new structural repairs.  The alternatives of, manually updating thresholds or re-
training software are impractical, time-consuming and complicate certification.  
This paper discusses an adaptive SHM methodology to accommodate changes in 
structural response that are not attributable to damage.  This methodology provides 
a path to implementing most standard damage detection algorithms, ranging in 
sophistication from percent change to pattern recognition, across an aircraft fleet in 
a static release format. The main departure from traditional SHM architectures 
resides in adaptive modules that can accommodate input changes, such as those due 
to manufacturing or installation variability, sensor health, bond quality and typical 
wear on a structure.  The overall goal was to integrate these adaptive modules 
within standard algorithms and logic without impacting their underlying reasoning 
or validity.  An application of this methodology is presented using data collected 
from graphite/epoxy laminates subjected to Lamb wave testing.  In this example, a 
pattern-recognition algorithm is employed to provide information about the 
presence, type and severity of damage.  The proposed methodology eliminates the 
need for re-training when slight variations are introduced to the experimental setup. 

 
 

INTRODUCTION 
 
Structural Health Monitoring (SHM) technology aims at the development of 

systems capable of continuously monitoring structures for damage with minimal 
human intervention to reduce life-cycle costs [1-2]. Researchers have developed 
numerous viable algorithms for characterizing structural damage using a variety of 
damage detection methods such as Lamb waves, modal analysis and Eddy currents 
to name a few [3-6]. The majority of these methods rely on experimental, or at the 
very least well simulated baseline, measurements to define the undamaged or 
pristine state of the structure. While these methods have yielded promising accuracy 
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in laboratory conditions, traditional algorithms are susceptible to rising false 
positive rates over time due to ageing materials, scheduled maintenance procedures 
and new structural repairs [7-8]. In addition, slight differences between aircraft in a 
fleet, such as those due to sensor placement, bondline preparation and 
manufacturing tolerances, could have a significant adverse effect on accuracy as 
well. Ideally, these issues could be overcome by revising algorithms, manually 
updating threshold levels or re-training software for individual aircrafts 
continuously over time, however this solution is logistically impractical as well as 
extremely time consuming, potentially negating the original benefits of deploying 
an SHM system. Furthermore, tailored changes to algorithms could invalidate or at 
lease complicate the certification of an SHM system. This paper discusses an 
adaptive SHM methodology to accommodate perturbations in structural response 
not attributable to damage, while maintaining or accounting for algorithm accuracy. 
Results are presented for simulated perturbations introduced to experimental data 
collected from composite plates subject to Lamb wave tests and pattern recognition.  

 
 

ADAPTIVE METHODOLGY FOR SHM ALGORITHMS 
 

The overall goal of the present research was to integrate adaptive modules 
within standard algorithms and logic without impacting their underlying reasoning 
or validity. This methodology provides a path to implementing most typical damage 
detection algorithms, ranging in sophistication from percent change to pattern 
recognition, across an aircraft fleet in a static-release format.  The following 
paragraphs describe four flowcharts developed to implement this methodology.  
 The Standard Training Flowchart, seen in Figure 1, indicates the steps 
necessary to calibrate a generic SHM algorithm, essentially characterizing the 
definitions for various states.  A more thorough discussion can be found in a 
previous paper, however generally training input consisting of data linked to 
complementary damage state is iterated through a series of signal processing steps 
to establish the training output parameters to be locked and used for testing [9].  A 
separate set of validation input is also utilized to establish state confidence levels.  
The Standard Testing Flowchart, seen in Figure 2, is executed to determine the 
present state of a structure given the training output parameters.  Beyond the 
acquired test data, only an undamaged baseline from the test structure is required to 
apply the previously developed algorithms and calculate prediction accuracy. 
 The Adaptive Training Flowchart, seen in Figure 3, is the main departure 
from traditional SHM architectures. Adaptation modules at the signal and feature 
level are established using perturbed training input and baseline signals 
(experimentally or simulation derived) iterated through the Standard Testing 
Flowchart, with the goal of minimizing impact on the algorithm accuracy.  These 
adaptation parameters are also locked to be used for adaptive testing along with 
updated confidence levels for each state as a function of perturbation level.  Finally, 
Adaptive Testing Flowchart, seen in Figure 4, is executed similarly to the standard 
test procedure to determine the state of damage including the adaptation parameters.  
Here, beyond the original baseline, a signal from a future “known good state” can 
be used to accommodate signal perturbations through the adaptation modules. 
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Figure 1:  Training Flowchart used to derive optimized damage characterization algorithm 
 

Training Flowchart Input  
Training Input – voltage versus time data linked to damage presence, type, size and location info 
Validation Input – separate set identical to training input used to validate generated algorithms  
 
Iterative Functional Blockset 
Signal Condition – signal processing tools to remove unwanted artifacts, filter and de-noise data 
Feature Extraction –  extracts quantifiable features from time, frequency and energy domains to 

characterize signal (max amplitude, arrival time, peak frequency, etc.) 
Feature Selection – most discriminative features are down-selected, such as those that are most 

consistent within a particular class and most variable between classes 
Feature Reduction – techniques to reduce the dimensionality of the selected features  
Pattern Recognition – models used to associate test data with a pre-trained classification 
Algorithm Development – equations to determine distance to damage based on time of flight 
 
Training Output  
Feature Parameters – designates selected features to extract and appropriate reductions 
Training Baseline – defines statistical average for all undamaged structure 
Recognition Dictionary – defines pattern recognition state machines 
Localization Algorithm – compiled algorithm to determine distance to damage 
Confusion Matrix – table of statistical accuracies of algorithms applied to validation data 
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Figure 2:  Testing Flowchart  
 

Testing Flowchart Input 
Data Acquisition – raw voltage versus time data is acquired from sensors 
Testing Baseline – undamaged baseline signal taken from test structure prior to testing 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
 
Functional Blockset 
Signal Condition – filtering and denoising pre-set in Training Flowchart 
Feature Extraction – extraction of selected features optimized in Training Flowchart 
Feature Reduction – reduction of feature dimensionality pre-set by Training Flowchart 
Pattern Recognition – using the recognition dictionary from the Training Flowchart 
Localization Algorithm – using the algorithms generated in the Training Flowchart 
Confusion Matrix – matrix generated using validation input is used to assign confidence levels 
 
Testing Output 
Presence of Damage – pattern recognition determines presence of damage above threshold value 
Type of Damage – pattern recognition determines type of damage or “unknown” class 
Size of Damage – pattern recognition determines severity of damage within pre-set ranges 
Location of Damage – time of flight algorithm determines approximate location of damage 
Confidence Levels – validated confusion matrix yields confidence levels for each damage state 
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Figure 3:  Adaptive Training Flowchart  
 

Adaptive Training Flowchart Input 
Adaptation Input – similar in format to training data, includes multiple sets of perturbations 
Adaptation Baseline – set of perturbed baselines that complement the Adaptation Input 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
 
Standard Functional Blockset 
Signal Condition – filtering and denoising pre-set in Training Flowchart 
Feature Extraction – extraction of selected features optimized in Training Flowchart 
Feature Reduction – reduction of feature dimensionality pre-set by Training Flowchart 
Pattern Recognition – using the recognition dictionary from the Training Flowchart 
Localization Algorithm – using the algorithms generated in the Training Flowchart 
 
Iterative Adaptive Blockset 
Signal Adaptation – signal is manipulated to resolve perturbations from training baseline 
Feature Adaptation – features are manipulated to resolve perturbations from training baseline 
 
Adaptation Output 
Adaptation Parameters – optimized parameters for signal and feature adaptation 
Adaptation Matrix – table of statistical accuracies of algorithms applied to adaptation data 
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Figure 4:  Adaptive Testing Flowchart  
 

Adaptive Testing Flowchart Input 
Data Acquisition – raw voltage versus time data is acquired from sensors 
Testing Baseline – original undamaged baseline signal taken from test structure prior to testing 
Adaptation Baseline – perturbed baseline signal to be used for adaptive algorithms 
Training Output – parameters generated by the Training Flowchart govern the testing algorithms 
Adaptation Output – parameters generated by Adaptive Training Flowchart govern adaptation 
 
Standard Functional Blockset 
Signal Condition, Feature Extraction & Reduction, Pattern Recognition and Localization 
Algorithm all remain locked as pre-set in Training Flowchart 
 
Iterative Adaptive Blockset 
Signal & Feature Adaptation remain locked as pre-set in Adaptive Training Flowchart 
Adaptation Matrix – confusion matrix from Adaptation Output used to assign confidence levels  
 
Testing Output 
Damage Presence, Type, Size & Location – from pattern recognition & localization algorithms  
Confidence Levels – adaptation confusion matrix yields confidence levels for each damage state 
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ADAPTATION MODULES 
 
 To compensate for small perturbations in signals, adaptation modules have 
been developed. If the original baseline signals obtained from a pristine structure is 
BO and an updated baseline signal from the same structure obtained at a later time is 
designated BN, then the main function of the adaptive compensation modules can be 
viewed as transforming BN to BN’ such that BN’ ≅ BO. This takes place with the two 
underlying assumptions that BN is collected within a known no-damage condition, 
and that the differences between BO and BN are within some tolerable threshold.  
This compensation occurs as a two-step process, first at the signal level and then at 
the feature level. At the signal level, adaptation is an extension of the signal 
conditioning step. The main difference is that most of the conditioning parameters 
for BN are determined with reference to the original baseline signal BO.  In this step 
signal normalization NNN BTB *'=  was achieved using the normalizing vector TN: 

)max(
1

peaktopeakN
N B

T
−−−

=  

At the feature level, the BN feature vector FBN is transformed to FBN’ by a series of 
transformation vectors, RT  for Rotation, ST  for Scaling, and RT  for Translation: 

BNRTSBN FTTTF *)**('=  
Transformation vectors are computed using the following optimization relations, 
where FB0 is the feature vector derived from the original baseline signal BO. 

)min( 0 BNxB FTF − , },,{ RTSX ∈  

Computed transformation vectors are then applied to any signal recorded thereafter.  
 
 
SIMULATED VALIDATION OF ADAPTIVE METHODOLGY  
 

An application of this methodology is presented using data collected from 9 
- 0.1”x11.75” square quasi-isotropic graphite/epoxy laminates with progressively 
severe levels of hole, delamination and impact damage being introduced. Each plate 
contained 2 bonded sensor nodes, and was subjected to Lamb wave testing [10-12]. 
Prior work applying a pattern-recognition algorithm to this data demonstrated 100% 
accuracy in determining presence and type of damage across 9000 trials, and 78% 
accuracy in predicting severity [9, 13-14]. These results were obtained using real 
data following the standard Training and Testing Flowcharts. 

To achieve first-order validation of this adaptive methodology, simulated 
perturbations were introduced into the experimentally collected baseline and test 
signals, and subsequently the Adaptive Training and Testing Flowcharts were 
executed. First, a time delay between 0-100µs was introduced, representing a 
change introduced by a repair moving a boundary condition. Next, a uniform 
amplitude attenuation between 0-10% was introduced, replicating a degraded sensor 
bondline. Last, a central frequency shift between 0-10% was introduced, as seen in 
aging or from saturated microcracks reducing the bulk material modulus within a 
design allowable range.  Results presented in Figure 5 demonstrate the effect of 
adaptation on the accuracy of predicting damage presence for perturbed signals. 
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Figure 5:  Results demonstrating effect of simulated signal perturbation on a pattern recognition 
algorithm with & without adaptive compensation:  A) time, B) energy, & C) frequency domains 
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CONCLUSIONS 
 
This paper presents an adaptive SHM methodology, designed to maintain 

damage detection algorithm accuracy while accommodating signal perturbations 
caused by ageing materials, scheduled maintenance procedures and new structural 
repairs. The methodology consists of three flowcharts for training of standard 
algorithms, training of the adaptation modules and testing using these trained 
parameters. Adaptation modules are inserted at both the signal and feature level to 
transform the test signal based on differences between original and present baseline 
signals.  Results are presented for detecting the presence of damage in composite 
plates with simulated perturbations of up to 10% in the signal time, energy and 
frequency domains. The standard pattern recognition algorithm exhibited reduced 
accuracy due to the perturbations, which further decreased as greater signal change, 
while the algorithm with adaptive compensation maintained accuracy by 
incorporating the new baseline signal. The present research was successful in 
demonstrating the feasibility of using adaptive modules to compensate for signal 
perturbations not attributable to damage, however work remains to fully develop 
this methodology for commercial applications. Future work will aim at conducting 
experiments to optimize the methodology, examine effects of signal perturbation on 
damage type, severity and location, as well as validation beyond pure simulation.   
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