STRUCTURAL HEALTH MONITORING OF COMPOSITE MATERIALS USING PIEZOELECTRIC SENSORS

Seth S. Kessler^{*} and S. Mark Spearing

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^{*} Corresponding author: Email address - sskess@mit.edu Phone - 617-253-8907 Fax - 630-214-8749

ABSTRACT

Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse "changes" in a structure in order to improve reliability and reduce life-cycle costs. The greatest challenge in designing a SHM system is knowing what "changes" to look for and how to identify them. This paper focuses on the relationship between sensing systems and their ability to detect changes in a structure's behavior. Experimental and analytical results are presented for in-situ damage detection of composite materials using piezoceramic sensors. Modal analysis methods have proven reliable for detecting small amounts of global damage in composite structures. By comparison, Lamb wave methods were sensitive to all types of local damage, and present the possibility of estimating damage location. Piezoelectrics could also be used as multipurpose sensors to detect damage using a variety of other methods including acoustic emission and strain monitoring simultaneously by altering driving frequencies and sampling rates. This paper also presents a recommendation for the design of a SHM system architecture. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

Keywords: Polymer-matrix composites; Structural health monitoring; Lamb waves; Modal analysis

INTRODUCTION

Structural health monitoring essentially involves the embedding of an NDE system (or a set of NDE systems) into a structure to allow continuous remote monitoring for damage. There are several advantages to using a SHM system over traditional inspection cycles, such as reduced down-time, elimination of component tear-down inspections and the potential prevention of failure during operation. Aerospace structures have one of the highest payoffs for SHM applications since damage can lead to catastrophic and expensive failures, and the vehicles involved undergo regular costly inspections. Currently 27% of an average aircraft's life cycle cost, both for commercial and military vehicles, is spent on inspection and repair; a figure that excludes the opportunity cost associated with the time the aircraft is grounded for scheduled maintenance [1]. Composite materials have presented additional challenges for maintenance and repair over metallic parts due to the anisotropy of the material, the conductivity of the fibers, and the insulating properties of the matrix. They also tend to fail by distributed and interacting damage modes and much of the damage often occurs beneath the top surface of the laminate. Currently successful composite non-destructive testing (NDT) techniques for small laboratory specimens, such as X radiographic detection (penetrant enhanced X-ray) and hydro-ultrasonics (C-scan), are impractical for in service inspection of large components and integrated vehicles. It is clear that new reliable approaches for damage detection in composites need to be developed to ensure that the total cost of ownership of critical structures does not become a limiting factor for their use.

As companies strive to lower their operational costs, many SHM schemes have been developed by industry, universities and research institutes. New military fighter-craft such as the Eurofighter, the Joint Strike Fighter and the F-22 all incorporate Health Usage Monitoring Systems (HUMS), which record peak stress, strain and acceleration experienced in key components of the vehicle [2]. While these measurements provide useful information about the state of the vehicle between flights, the value of such a system could be greatly increased if continuous data could be accessed instantaneously. In a collection of papers written by Zimmerman, he suggests that an algorithmic approach could be used to enhance the model correlation and health monitoring capabilities using frequency response methods [3]. Minimum rank perturbation theory is used to address the problem of incomplete measurements, since a true structure does not conform to ideal conditions. Other researchers have developed algorithms to attempt to correlate modal response under arbitrary excitation to models using a probabilistic sub-space based approach [4]. Recently, Boeing has been exploring the use of frequency response

methods in SHM systems for composite helicopter blades [5]. Their system, which is called Active Damage Interrogation (ADI), uses piezoelectric actuators and sensors in various patterns to produce transfer functions in components that are compared to baseline "healthy" transfer functions to detect damage. Giurgiutiu used Lamb wave techniques to compare changes in thin aluminum aircraft skins after various levels of usage to detect changes, and used finite element techniques to attempt to predict the level of damage with some success [6]. More detailed work was done by Cawley's group at Imperial College, who used Lamb waves to experimentally examine representative metallic aircraft components such as lap joints, painted sections and tapered thickness [7]. The paper concludes that these methods present good sensitivity to localized damage sites, however the responses are often complicated to interpret, and many limitations exist for the implementation of these methods over large areas. Honeywell and NASA have been working in a collaborative project since the mid-1990's to introduce an acoustic emission-based SHM system into critical military aircraft components [8, 9]. This program, which involved the monitoring of T-38 and F/A-18 bulkheads, is one of the most thorough examples of a SHM system to date. These experiments were able to demonstrate successfully the collection of fatigue data and triangulation of some cracks from metallic components while in flight, which could then be analyzed post-flight to make decisions about flightreadiness. In another program Northrop had similar success using AE to monitor small aircraft [10]. They suggested using between 100 and 1000 sensors to implement this system in a larger aircraft depending on whether the entire structure is being monitored or just critical components.

The primary goal of SHM is to be able to replace current inspection cycles with a continuously monitoring system. This would reduce the downtime of the vehicle, and increase the probability of damage detection prior to catastrophic failure. Several parts of SHM systems have been developed and tested successfully, however much work remains before these systems can be implemented reliably in an operational vehicle. The present research attempts to fill some of the gaps remaining in SHM technologies. NDE techniques with the highest likelihood of success were thoroughly examined, including frequency response, Lamb wave, acoustic emission and strain monitoring methods. For each of these methods, an analytical and experimental procedure was followed to optimize the testing parameters and data interpretation. Their strength, limitations and SHM implementation potential were evaluated, and suggested roles for each are presented. The requirement of the other components necessary in an SHM system are described, and recommendations are offered for a structural health monitoring system architecture based on the results of this research.

COMPONENTS OF AN SHM SYSTEM

Architecture

The requirements of the end users are incorporated into the architecture in order to define the types of damage to be monitored, the critical flaw size, the weight and power budget for the system, and the level of importance of the various structural members that need to be monitored. It includes the layout of where the physical components of the SHM system lie and how they interact. One key decision is the choice between a real-time (continuous) and discontinuous SHM system. A real-time SHM system is one that continually monitors a structure during operation, and produces data that can be directly utilized at any point by either an operator or ground control station. A discontinuous SHM system is one in which data can only be accessed post-operation and could contain either a stored record of operational health data or might involve performing an integral inspection upon demand. Additionally the level redundancy for each component needs to be assigned to achieve a desired level of system reliability in catching false-positives as well as true-positives. The designer must also determine the sensor placement density and pattern; the more sensors the better the damage resolution, with increased power and weight as penalties. One architectural concept is that of the SHM patch. This scheme clusters several sensors and other components together to be incorporated on the structure to operate independently of other patches.

Damage Characterization

Damage characterization is probably the most fundamental aspect of detecting damage; the familiarity of what kinds of damage are common in a type of material, and the knowledge of what reasonable "changes" correspond to these forms of damage. These damage characteristics dependent on the type of material the structure is manufactured with, as well as the structural configuration. With metallic structures, designers and operators are mostly concerned with fatigue cracks and corrosion, while for composite materials, delamination and impact damage are more of a concern. Structural configuration includes secondary structures that may introduce new areas for damage to exist, or influence the effect of damage on the primary structure. Once an understanding of the damage signature in the material of concern is reached, then the sensing method and sensors can be selected.

Sensors

Sensors are used to record variables such as strain, acceleration, sound waves, electrical or magnetic impedance, pressure or temperature. In the literature it has been estimated that a SHM system for an aerospace vehicle would require between 100 and 1000 sensors, depending on its size and desired coverage area [10]. Sensing systems can generally be divided into two classes: passive or active sampling. Passive sampling systems are those that operate by detecting responses due to perturbations of ambient conditions without any artificially introduced energy. The simplest forms of a passive system are witness materials, which use sensors that intrinsically record a single value of maximum or threshold stress, strain or displacement. Examples of this can be phase change alloys that become magnetized beyond a certain stress level, shape memory alloys, pressure sensitive polymers, or extensometers. Another type of passive sensing is strain measurement by piezoelectric wafers. Lastly, several vibrational techniques can be performed passively, such as some accelerometers, ambient frequency response and acoustic emission with piezoelectric wafers. Active sampling systems are those that require externally supplied energy in the form of a stress or electromagnetic wave to properly function. A few strain-based examples of active systems include electrical and magnetic impedance measurements, eddy currents and optical fibers which require a laser light source. Active vibrational techniques include the transfer-function-based modal analysis and Lamb wave propagation. Good references for selection of actuators for various active systems can be found in a review paper by Huber et al [11]. Passive techniques tend to be simpler to implement and operate within a SHM system and provide useful global damage detection capabilities, however generally active methods are more accurate in providing localized information about a damaged area. A comparison of the sensing methods can be seen in Table 1. Sensor selection charts plotting size of detectable damage against sensor size and power requirement for various coverage areas, can be found in Figure 1 and Figure 2. It can be seen that they are all generally capable of detecting the same size of damage and can be implemented with similar size and power sensors, however frequency response and Lamb wave techniques are the only ones that can offer full surface coverage for a 1 x 1 m plate. While some other methods, such as eddy currents, can offer better damage resolution, they are only capable of detecting damage directly below the sensor, which would drive the system to use either very large sensors or a large volume of sensors.

Computation

Several processing units are necessary to operate a SHM system. On the local level, a processor must interface with the sensors to acquire the data and convert the raw analog signals to digital ones. If it is an active system, such as with Lamb wave methods, the processor must send instructions or waveforms to the actuator periodically. Data rates between 25 and 50 Megabytes per second would be necessary for each Lamb wave sensor collecting data in the system, or 0.5 to 1 Megabytes per second for acoustic emission sensors [10]. At these rates, it can be seen that a large data storage capacity would become necessary for continuous monitoring, however a single Lamb wave test would only use 50 kilobytes. Local processing may also be necessary to compare data between neighboring sensor patches for damage verification. There are also global computational needs to use algorithms to assess the severity of damage, triangulate damage locations or make failure predictions, and to convey this information to the end-user.

Communication

Another important component of a SHM system is a communication system. This involves the transfer of data in one form or another between various components of the system. There are essentially four areas where the transfer of data is necessary: intra-patch, inter-patch, patch-processor and processor-operator. Intra-patch communications refers to the transfer of data, either analog or digital form, between various components within a local sensor patch. This might include the passing of data from the sensor to data acquisition board, an analog-to-digital converter, or possibly a local processor chip for preliminary data analysis. These transfers would most likely be across metallic wires or optical fibers since they would only be traveling a short distance, on the order of a few centimeters to a meter at most, and there could be many sensors involved. The next category is inter-patch communications, which refers to the transfer of information between various patches in different regions. In some SHM schemes, it would be beneficial for local sensor sites to be able to communicate in order to compare or verify data and consequently increase reliability. Most of this category would be performed with low power wireless transfers over a few meters, so that the various patches could be installed and operate independently. Next, patch-processor communication is necessary to transfer the collected sensor data to a central processing unit. Most likely a high-powered wireless method would be necessary to transfer the data to the computer which could be tens of meters away. Lastly, the state of the structure must be conveyed between the processor and the end user.

Power

Most of the components mentioned in the previous sections require power to function. Piezo actuators, for example, operating actuating at 15 kHz with 5 V peak-to-peak would draw 24 mW each. A low power microcomputer to process the data would likely draw about 10 mW, and a short range wireless device would require about 5 mW to function. Although the individual component power demands are low, this becomes challenging when there are many components distributed throughout the surface of the structure, some of which can even be embedded within the skin. Power could be supplied locally by batteries, or provided from within the vehicle via an electrical bus. Some researchers have proposed systems where energy is transmitted by radio frequencies to inductive loops, or collected passively with harvesting devices to the local sensor and processing patches.

Algorithms

Algorithms are probably the most essential component to a SHM system. They are necessary to decipher and interpret the collected data, and require an understanding of the operational environments and material thresholds. Examples of algorithms that have been used in this research include codes that perform modal analysis and wavelet decomposition. Other algorithms that could be embedded into a SHM system include codes that interpret the sensor data to specify the damage size and location, codes that calculate the residual strength or stiffness of the structure, or codes that predict failure based upon the measured damage.

Intervention

The last potential component of a SHM system is some form of intervention mechanism. Current intervention usually involves a mechanic performing a prescribed repair. Future advanced intervention systems mechanisms may use the collected damage detection data to mitigate further damage actively, or possibly even temporarily or permanently repair the damage site. Some proposed ways of achieving this intervention include the use of shape memory alloys to stiffen particular areas in the wake of a crack, or inserting epoxy reservoirs or duel phase matrices into a composite to close punctures in the structure.

POTENTIAL SHM SENSING METHODS

Frequency Response Methods

Experimental procedures

The first damage detection methods surveyed during the present research were the frequency response methods. Detailed results for these experiments have been presented in previous papers [12-14]. Narrow rectangular quasi-isotropic [90/ \pm 45/0]_s laminates were manufactured of the AS4/3501-6 graphite/epoxy system with various forms of damage introduced to them, including matrix-cracks, delaminations and through-holes. PZT piezoceramic patches were affixed to each specimen using 3M ThermoBondTM thermoplastic tape. In order to measure the natural frequencies of the specimen an impedance meter was used, and the mode shapes were deduced used a scanning laser vibrometer. The specimens were excited using the PZT wafers by a 5 V sine chirp signal, which was sent to the piezos through a function generator to drive them between 0 Hz and 20 kHz. A table comparing the first six natural frequencies and mode-shapes of a control specimen and several other damaged specimens can be found in **Table 2**. The velocity magnitude response to a frequency range below 500 Hz for the control and delaminated specimens is displayed in **Figure 3** to demonstrate the effect of damage on the frequency response of a system.

Finite element model

A finite element analysis was performed to predict the frequency response of each specimen. Eight-node quadrilateral shell elements were used to model the specimen, and the "Simultaneous Vector Iteration" method was used to calculate the natural frequencies of the system up to 20 KHz, and their corresponding mode shapes. A table comparing the first six natural frequencies and mode-shapes of each specimen can be found in **Table 3**. An example of a transfer function comparison plot between a control model and one with a delamination is shown in **Figure 4**.

Discussion

For both the numerical (FE) and experimental results it is evident that all the forms of damage investigated in this study caused detectable changes in the natural frequencies of a simple coupon. These changes are present in each of the lower normal frequencies discovered, and become more pronounced at higher frequencies. Good correlation was found between the model and the experimental results for low frequencies, however coalescing modes at higher frequencies made comparison impractical. For both the results, as published in the literature, a strong correlation existed between relative frequency reduction and the area damaged by a particular mechanism, however it is difficult to draw any conclusions about the criticality of the damage since there is no information regarding the form of the damage or its orientation. Based on these results, it is likely that an observer can discern whether a structure has been damaged by observing its frequency response, however it would be difficult to differentiate reliably between damage types, locations and orientations. This method appears to be appropriate for detecting global changes in stiffness for relatively large structures at a low power and weight cost.

Lamb Wave Methods

Experimental procedures

The next method explored during the present research examined the utility of using Lamb waves for damage detection. Again, detailed results for this Lamb wave research has been presented in previous papers [14-18]. The experimental procedures followed a building block approach, and the first set of experiments conducted on narrow composite coupons presented in the previous section [19]. Both the actuation and the data acquisition were performed using a portable NI-DaqpadTM 6070E data acquisition board, and a laptop running LabviewTM as a virtual controller. A single pulse of 3.5 sine waves under a Hanning window was sent to the driving PZT at 15 kHz to stimulate an A_0 mode Lamb wave, and concurrently the strain-induced voltage outputs were recorded by a sensing PZT wafer. The results were compared by performing a Morlet wavelet decomposition centered at the driving frequency [20]. This procedure was also carried out for beam specimens, laminated plates with bonded stiffeners, and a sandwich construction cylinder. The voltage time traces for each of the narrow coupons is shown in **Figure 5**, and a summary comparing the recorded times of flight for can be found in **Table 4**. Probably the most significant result of the present research was the "blind test." Four beam specimen were tested, one with a known delamination while of the remaining three specimens it was unknown which contained a disbond and which were controls. By comparing the wavelet plots in **Figure 6**, it was easily deduce that the two control specimens are the ones with much more transmitted energy, while the third specimen (Control C) obviously has the flaw.

Analytical procedure

Finite element models were created in ABAQUSTM to represent each of the experiments, using 1 cm² square shell elements to predict the small changes in time of flight caused by damage. The results were visualized as a movie file to measure the time of flight of the Lamb waves across the specimens and record visual evidence of dispersion. A series of still shots of a Lamb wave propagating in a control model can be seen in **Figure 7** and for a delaminated model in **Figure 8**. A summary comparing the recorded times of flight for each of the models can be found in **Table 5**.

Discussion

The results from the narrow coupon tests clearly show the presence of damage in all of the specimens; this was made most obvious by comparing the wavelet decomposition plots. The control specimens retained over twice as much energy at the peak frequency as compared to all of the damaged specimens. The loss of energy in the damaged specimens was due to reflection energy and dispersion. Similar effects of damage were observed in each of the built-up composite structure cases. By comparing the stiffened plates with and without a delamination, a reproducible signal was transmitted across each of the intact portions while it was obvious that the signal traveling through the delaminated region was propagating at a different speed. Finally, in the composite sandwich cylinder the impacted region caused severe dispersion of the traveling Lamb wave, which in turn attenuated the received signal further down the tube. Lamb wave techniques have the potential to provide more information than other methods since they are sensitive to the local effects of damage in a material. Similar to frequency response methods, their results are limited at higher frequencies, however their low frequency results should provide sufficient data to predict damage. The disadvantage of Lamb wave methods is that they require an active driving mechanism to, and the resulting data can be more complicated to interpret. Overall however, Lamb wave methods have been found to be effective for the in-situ determination of the presence and severity of damage in composite materials.

Other Piezo-Based Sensing Methods

Experimental procedures

There are many advantages to using piezoelectric sensors in SHM applications; they are light, can be conformable, use little power and are sensitive to small strains and accelerations. Previous sections of this paper have given a detailed account of the frequency response and Lamb wave methods using piezo sensors. Both of these methods have demonstrated useful sensitivity to damage, however they are most effectively implemented actively by using powered actuators in a pulse-transmission or pulse-echo mode. Perhaps the greatest advantage of using piezoelectric material for sensors, is that they can be used for a wide variety of detection techniques by simply altering the time scale of analysis or actuating signal. This section gives an overview of two further techniques, strain monitoring and acoustic emission, which could be implemented via the piezoelectric sensors and system infrastructure used for the previous two methods presented, to detect damage passively without the use of actuators.

In the first of these tests, a narrow coupon specimen was tested in tension, to assess the accuracy of the piezoelectric sensors for the measurement of strain by contrasting them to foil-gauge results, shown in **Figure 9**. The piezo data was nonlinear however, which can be attributed to thermoplastic tape that attached the sensor to the specimens. A second test was performed on a laminated plate in order to explore using piezo sensors to monitor damage events using acoustic emission. Piezo patches were affixed in the center of each of the sides along the perimeter of the specimen, and data was collected at 50 Hz while a graphite pencil tip was broken in several locations on the laminate. The voltage results from these tests are plotted in **Figure 10**, and from these plots one can see the acoustic event within the signal by the spikes present. At this data sampling rate however, it was not possible to resolve the arrival times of the voltage spikes accurately enough to perform a triangulation calculation. A reasonable prediction of the pencil break site could be made from wavelet plots though, by comparing the magnitude of the energy present for each piezo at the time of the breakage.

Discussion

While conclusive results were not obtained from either of the test performed during this portion of research, along with results that have been presented in the literature these tests have proved the feasibility of implementing other damage detection methods within the infrastructure of sensors that were used for the frequency response and Lamb wave methods. Using strain monitoring methods, measuring the peak strain witnessed at the surface of a laminate could help to make a prediction of failure based upon the strain limitations of the material. Several researchers in the literature have successfully fabricated piezoelectric-based strain gauges that are viable for acceptable strain rates and ranges. Additional research would have to be performed to find a more appropriate attachment mechanism for this method to be successful. Similarly, the literature has presented prior successful acoustic emission work that has been performed using sampling rates between 300 kHz and 3 MHz with optimized sensors. To monitor continuously, custom software would have to be used to collect and purge small buffered series of data at high acquisition rates to avoid collecting a large volume of data. Regardless, acoustic emission methods have shown the potential to provide valuable information to the system concerning the occurrence of an impact event and proximity to the sensor. Coupled with the results presented in the literature, this data has demonstrated the possibility that useful data could be collected passively with some additional software and data processing.

RECOMMENDATIONS FOR SHM SYSTEMS IN COMPOSITE STRUCTURES

The main focus of this paper is to provide design recommendations and guidelines for the implementation of an structural health monitoring system in a composite structure. An effective design will use several different sensing methods, taking advantage of both the strengths and weaknesses of each; for example certain methods work only in conducting materials and other in insulating ones, so potentially, damage to fibers could be differentiated from damaged matrix in a composite by using both concurrently. The trade between redundancy and reliability is essential since missed damage or false-positives could undermine any anticipated reduction in life-cycle costs. Using event-driven processing, such as a passive system triggering a dormant active one could reduce power and complexity, and further gains could be reached by using ambient conditions to provide power or actuation. Lastly, it would be advantageous to design a system that was flexible enough to be retrofitted into existing aging systems.

A design proposed by the authors would use relatively small (0.25 - 1.0 m²) autonomous sensor patches as its key elements. These patches would include multiple piezoelectric sensors around their perimeter, local wiring between the sensors (longest length of 0.5 m), a data acquisition/processing device (capable of sampling around 1 MHz), a rechargeable polymer battery with an inductive coil for power reception (50 mW required to power all components), and a short range wireless device (10 m transmission range). All of these components would be embedded or deposited onto a conformable insulating polymer sheet with a thermoplastic adhesive backing, so the patch could be removed if it were damaged or if the structure required repair. A neural network algorithm could be used for the sensors to "learn" the topology of the area of structure they are adhered over, to collect a small database of the undamaged state, and to discern where each patch was in spatial coordinates of the structure. In operation the sensors would passively collect strain and acoustic emission data, passing their data along to their local processing units. When abnormal data is encountered, active transfer function frequency response and Lamb wave methods would be initiated, using the same piezoelectric sensors, to verify the presence of damage. Once damage is located within the patch region, the nearest neighbor patches would be contacted wirelessly to attempt to confirm the damage. This compiled and compressed data would then be passed patch to patch to the central processing unit to be interpreted, and the damage type, severity and location would be indicated to the operator and ground crew on a computer terminal along with suggested actions. This system would function continuously during operation, and could also be automatically accessed by the operator or ground crew to perform a mid-air or ground inspection on demand. As a first step towards acceptance of such a system, the operator could rely on it only to speed ground inspections by accessing the in-situ sensor patches via an ethernet connection to replace tear-down inspections.

CONCLUSIONS

Structural health monitoring systems will be an important aspect of future aerospace vehicles in order to reduce their life-cycle costs. To bring SHM systems to fruition, several areas in each of the components described above need to be researched further. The miniaturization of each component would greatly reduce their weight and aspect ratio, and would also decrease the manufacturing times and costs. It has also been demonstrated in the literature that for several applications that the sensor gains considerable sensitivity by reducing its scale [21]. To decide between architectural schemes, a SHM system designer will have to compare the cost of development, the cost of implementation, the cost of operation, and the impact to the production of the vehicle with the estimated savings in inspection and maintenance from traditional methods and the reliability and longevity gains. These systems will reduce vehicle life-cycle costs by eliminating routine inspections, averting both underuse and overuse, and predicting failure in time for preventative care. Structural heath monitoring systems are likely to be an important component in future designs of composite air, and spacecraft and in-situ piezoelectric-based NDE techniques will likely play a vital role.

REFERENCES

- 1. Hall S.R. and T.J. Conquest. "The Total Data Integrity Initiative—Structural Health Monitoring, The Next Generation." *Proceedings of the USAF ASIP*, 1999. 2nd ed.
- 2. Neumair M. "Requirements on Future Structural Health Monitoring Systems." *Proceedings of the 7th RTO Meetings*, May 1998.
- 3. Zimmerman D.C., Simmermacher T. and M. Kaouk. "Model Correlation and System Health Monitoring using Frequency Domain Measurements." *AIAA Journal*, 1995, 3318-3325.
- 4. Abdelghani M., Goursat M. and T. Biolchini. "On-Line Modal Monitoring of Aircraft Structures under Unknown Exication." *Mechanical Systems and Signal Processing*, v.13, 1999, 839-853.
- 5. Dunne J.P., Pitt D.M. and D.A. Sofge. "Recent Advances in Active Damage Interrogation." Proceedings of the 42nd AIAA SDM Conference, Seattle, WA, 2001.
- 6. Giurgiutiu V., Bao J. and W. Zhao. "Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures." Proceedings of the 8th International SPIE Symposium on Smart Structures and Materials, Newport Beach, CA, 2001.
- 7. Dalton R.P., Cawley P. and M.J.S. Lowe. "The Potential of Guided Waves for Monitoring Large Areas of Metallic Aircraft Fuselage Structure." *Journal of Nondestructive Evaluation*, v.20, 2001, 29-46.
- 8. Schoess J.N. "Distributed System Architecture Alternatives for Condition Based Maintenance (CBM)." Honeywell Technology Center Report, 1999.
- 9. Van Way C.B., Kudva J.N. and Schoess J.N. "Aircraft Structural Health Monitoring System Development overview of the Air Force/Navy Smart Metallic Structures Program." *Proceedings of the SPIE Symposium on Smart Structures and Materials, San Diego*, CA, 1995.
- 10. Marantidis C., Van Way C.B. and J.N. Kudva. "Acoustic-Emission Sensing in an On-Board Smart Structural Health Monitoring System for Military Aircraft." *Proceedings of the SPIE Conference on Smart Structures and Integrated Systems*, v. 2191, 1994, 258-264.
- 11. Huber J.E., Fleck N.A. and M.F. Ashby. "The Selection of Mechanical Actuators based on Performance Indices." *Proceedings of the Royal Society of London*, 1997, 2185-2205.
- Kessler S.S., Spearing S.M., Atalla M.J., Cesnik C.E.S. and C. Soutis. "Damage Detection in Composite Materials using Frequency Response Methods." Proceedings of the SPIE's 8th International Symposium on Smart Structures and Materials, 4-8 March 2001, Newport Beach, CA, NDE 4336-01.
- 13. Kessler S.S., Spearing S.M., Atalla M.J., Cesnik, C.E.S. and C. Soutis. "Structural Health Monitoring in Composite Materials using Frequency Response Methods." Accepted for publication by *Composites Part B*, June 2001.
- 14. Kessler S.S. "Piezoelectric-Based In-Situ Damage Detection of Composite Materials for Structural Health Monitoring Systems." Massachusetts Institute of Technology, Ph.D. thesis, January 2002.
- 15. Kessler S.S., Spearing, S.M. and C. Soutis. "Damage Detection in Composite Materials using Lamb Wave Methods." Proceedings of the American Society for Composites, 9-12 September 2001, Blacksburg, VA.
- 16. Kessler S.S., Spearing S.M. and C. Soutis. "Optimization of Lamb Wave Methods for Damage Detection in Composite Materials." Proceedings of the 3rd International Workshop on Structural Health Monitoring, 12-14 September 2001, Stanford University.
- 17. Kessler S.S., Spearing S.M. and C. Soutis. "Structural Health Monitoring in Composite Materials using Lamb Wave Methods." Submitted for publication to *Smart Materials and Structures*, July 2001.
- Kessler S.S., and S.M. Spearing. "Damage Detection in Built-Up Composite Structures using Lamb Wave Methods." Submitted for publication to *Journal of Intelligent Materials Systems and Structures*, December 2001.
- "The Composite Materials Handbook MIL-17 Vol. 1" Guidelines for Characterization of Structural Materials." MIL-HDBK-1E, Department of Defense, 1999.
- 20. Strang G. and T. Nguyen Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, Ma, 1996.
- 21. Schoess J.N., Arch D. and Yang W. "MEMS Sensing and Control: An Aerospace Perspective." *Honeywell Technology Center Report*, 2000.

Method	Strengths	Limitations	SHM Potential
Visual	Inexpensive equipment	Only surface damage	Currently none
	Inexpensive to implement	Only large damage	-
	No data analysis	Human interpretation	
	Portable	Can be time consuming	
	Simple procedure	_	
X-radiography	Penetrates surface	Expensive equipment	Currently none
	Small defects with penetrant	Expensive to implement	
	No data analysis	Human interpretation	
	Permanent record of results	Can be time consuming	
	Simple procedure	Require access to both sides	
		Safety hazard	
Strain Gauge	Portable	Expensive equipment	Lightweight
-	Embeddable	Expensive to implement	Conformable
	Surface mountable	Data analysis required	Can be deposited
	Simple procedure	Localized results	Very low power draw
	Low data rates		Results for small area
Optical fibers	Inexpensive equipment	Expensive to implement	Lightweight
1	Embeddable	Data analysis required	Large area coverage
	Quick scan of large area	High data rates	Must be embedded
		Accuracy in question	Requires laser
Ultrasonic	Inexpensive to implement	Very expensive equipment	Currently none
	Portable	Complex results	
	Sensitive to small damage	Specialized software	
	Quick scan of large area	High data rates	
		Couplant required	
		Require access to both sides	
Eddy current	Inexpensive to implement	Expensive equipment	Lightweight
	Portable	Very complex results	Conformable
	Surface mountable	Specialized software	Can be deposited
	Sensitive to small damage	Safety hazard	Very high power draw
		Conductive material only	Results for small area
Acoustic emission	Inexpensive equipment	Very complex results	Lightweight
	Inexpensive to implement	Very high data rates	Conformable
	Surface mountable	Specialized software	Can be deposited
	Portable		No power required
	Quick scan of large area		Results for large area
	Sensitive to small events		Triangulation capable
Modal analysis	Inexpensive equipment	Complex results	Lightweight
·	Inexpensive to implement	High data rates	Conformable
	Surface mountable	Specialized software	Can be deposited
	Portable	Results are global	Multi-purpose sensors
	Simple procedure		Low power required
	Quick scan of large area		Results for small area
Lamb waves	Inexpensive equipment	Very complex results	Lightweight
	Inexpensive to implement	Very high data rates	Conformable
	Surface mountable	Specialized software	Can be deposited
	Portable		Medium power draw
	Sensitive to small damage		Linear scan results
	Ouick scan of linear space		Triangulation possible

Table 2: Natural frequencies and mode shapes as determined from scanning laser vibrometer data							
(All Hz)	Shape	Control	Hole	Impact	Delamination	Fatigue	Bend
Mode 1	1 st Bending	12.5	12.5	12.5	12.5	12.5	12.5
Mode 2	2 nd Bending	78.1	78.1	76.5	78.1	75.0	76.3
Mode 3	1 st Torsion	157	148	147	137	146	137
Mode 4	3 rd Bending	218	217	216	215	209	214
Mode 5	4 th Bending	423	423	423	428	413	423
Mode 6	2 nd Torsion	461	453	453	451	428	432

Table 3: Natural frequencies and mode shapes as determined from FEM in I-DEAS							
(All Hz)	Shape	Control	Hole	Impact	Delamination	Fatigue	Bend
Mode 1	1 st Bending	12.5	12.4	12.5	12.1	12.1	12.3
Mode 2	2 nd Bending	77.8	77.2	77.5	75.5	73.7	76.3
Mode 3	1 st Torsion	157	155	156	149	150	154
Mode 4	3 rd Bending	218	217	217	211	213	216
Mode 5	4 th Bending	428	425	426	412	413	422
Mode 6	2 nd Torsion	476	473	474	465	466	472

Table 4: Lamb wave times of flight and group velocities for narrow coupons as observed experimentally							
(times in microseconds,	TOF based on	TOF based on	Cg based on	Cg based on	Δt from		
velocities in m/s)	initial arrival	peak arrival	initial arrival	peak arrival	undamaged		
Undamaged	216	218	952	944	-		
Center cracked region	238	233	864	883	22		
Center 5mm hole	226	230	910	894	10		
Center 50x50mm delam	261	258	788	797	45		
Side 50x25mm delam	231	220	890	935	15		

Table 5: Lamb wave times of flight and group velocities for narrow coupons as observed from FEM solutions							
(times in microseconds, velocities in m/s)	TOF based on initial arrival	TOF based on peak arrival	Cg based on initial arrival	Cg based on peak arrival	∆t from undamaged		
Undamaged	230	230	894	894	-		
Center cracked region	231	231	891	891	1		
Center 5mm hole	237	231	868	891	7		
Center 50x50mm delam	306	280	672	735	76		
Side 50x25mm delam	292	354	704	581	62		