

mechanical design custom sensor systems lean enterprise solutions

Adaptive SHM Methodology to Accommodate

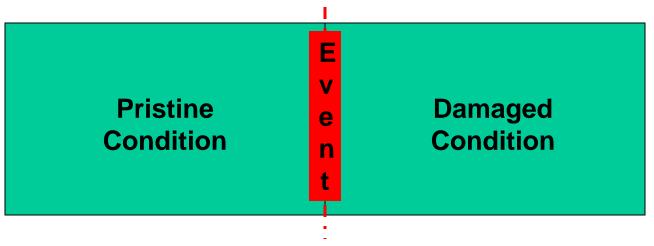
Structural Ageing, Maintenance and Repair

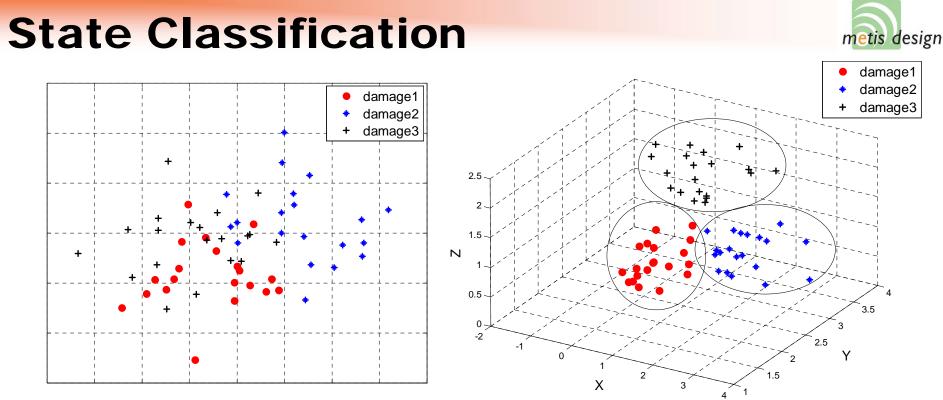
Seth S. Kessler, Ph.D.

skessler@metisdesign.com

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

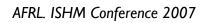
Introduction

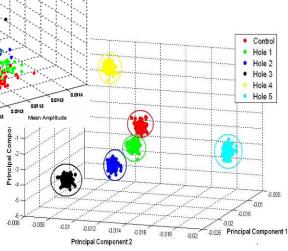



- SHM algorithms are susceptible to rising false positive rates
 - > materials age due to environmental and mechanical fatigue
 - > maintenance and repairs can tighten bolts, replace ribs or add patches
- Differences between aircraft in a fleet could affect accuracy
 - sensor tolerances, placement, installation and bond preparation
 - manufacturing tolerances for individual aircraft
- Can compensate by revising or retraining algorithms over time
 - > logistically impractical, time consuming, negates SHM economic benefits
 - > tailored changes invalidate/complicate certification of an SHM system
- Adaptive pattern recognition-based methodology proposed
 - > accommodate perturbations in structural response not due to damage
 - goal of maintaining or accounting for algorithm accuracy

Damage Detection Fundamentals

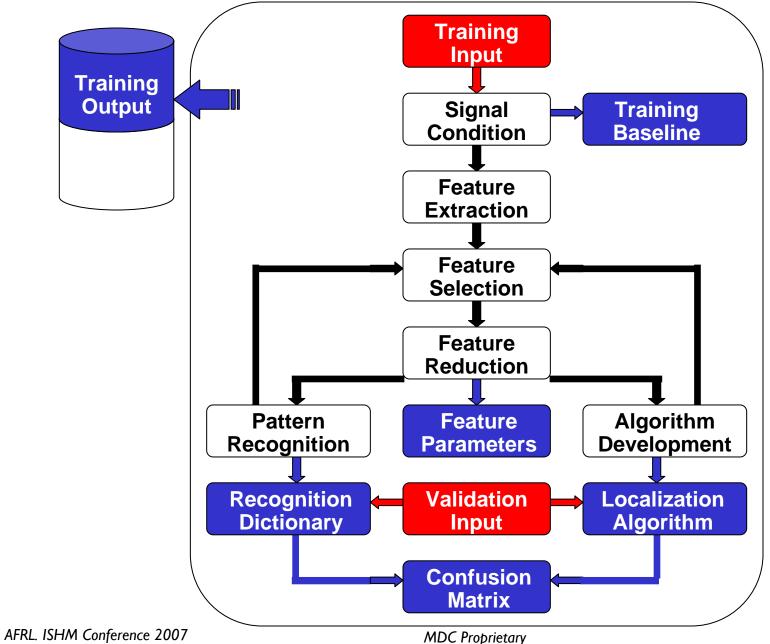
- Several challenges involved in detecting damage
 - > metals: corrosion and fatigue cracks primary concern
 - > composites: delamination and impact (below visible surface) dominate
 - > modes may not be discrete, can interact for both materials
- Ideally top-level binary categorization of pristine or damaged
 - > taking micromechanics view materials inherently have flaws
 - > microscopic flaws grow slowly, accelerated overload or impacts events
 - > damage threshold must be defined for some detectable flaw size level




- Would like further classification beyond presence of damage
 > limited features may be used to separate damage and no damage
 - > may not be feasible to distinguish between modes if linearly inseparable
- Must extract many separate features for detailed classification
 - pattern recognition methods trained to recognize multiple damage states
 - > large feature set may lead to redundancy and computational inefficiency
 - Feature reduction techniques can be employed to reduce dimensionality

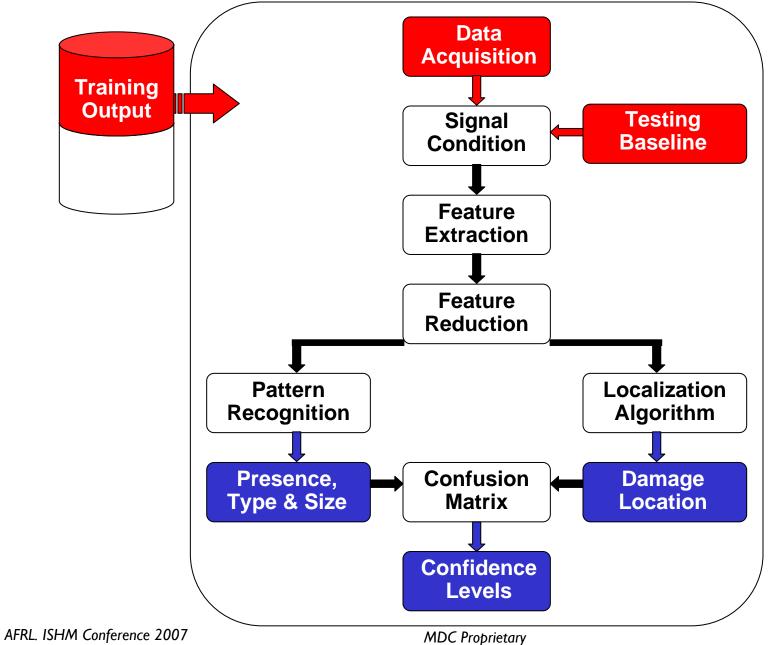
Standard Methodology Steps

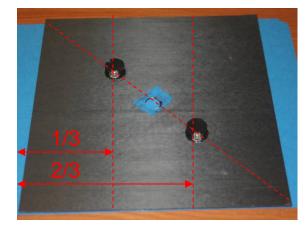
- Signal Conditioning
 > denoise raw signal
 - remove unwanted artifacts
- Feature Extraction
 - > discriminative features for analysis
 - time, frequency & energy domains
- Feature Selection
 - repeatable features unique to class
 - can reduce dimensionality (PCA)
- Algorithms
 - > Pattern Recognition (PR) to identify damage presence, type and severity
 - Iocalization performed with convention single or multi-sensor methods
 - > confusion matrix can be used to calculate confidence levels



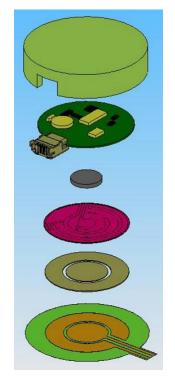
0.5

SH 0.4


Standard Training Flowchart


Standard Testing Flowchart

Experimental Setup


Plates	Damage Type	Damage Severity				
3	Impact (5 lbs dropped weight)	4", 8", 16", 32"				
3	Hole (center drilled)	¹ / ₃₂ ", ¹ / ₈ ", ¹ ⁄ ₄ ", ¹ ⁄ ₂ "				
3	Delamination (corner cut)	1⁄4", 1⁄2", 1", 1.5"				

- 11.75" x 0.1" square quasi-isotropic CFRP laminates, 2 nodes
- Lamb wave tests performed in pulse-echo mode at 100kHz
- 3 damage modes investigated with 4 levels of severity for each
- 100 tests per node for each configuration, total 9000 data sets
 - > 1 node for each damage type was designated as the "training node" and all data collected was used to train PR algorithm
- > other nodes on same and all separate plates were "testing nodes" used to collect experimental data for subsequent predictions 8 AFRL. ISHM Conference 2007 **MDC** Proprietary

M.E.T.I.-Disk 3 Digital SHM Nodes

- Monitoring & Evaluation Technology Integration
 - > concentric piezoceramic sensor/actuator elements
 - rigid-flex technology used for ADC & DAC
 - > mini-USB connector for power and data transfer
 - > 1" diameter urethane encapsulation for durability
- Digital SHM infrastructure (TRL 7 demonstrated)
 - > Lamb wave, modal analysis, AE capable
 - > 2 channel 1MHz 16-bit ADC & 1MS/s 8-bit DAC
 - > 20Vpp drive voltage, programmable gains
 - > daisy-chain compatible using CAN bus
- Point-of-Measurement (POM) sensing
 - RAM enables local filtering, logic & computation
 - > digitizing at POM minimizes EMI introduction
- AFRL. ISHM Conference 2007
 AFRL. ISHM Conference 2007
 MDC Proprietary

Pattern Recognition Results

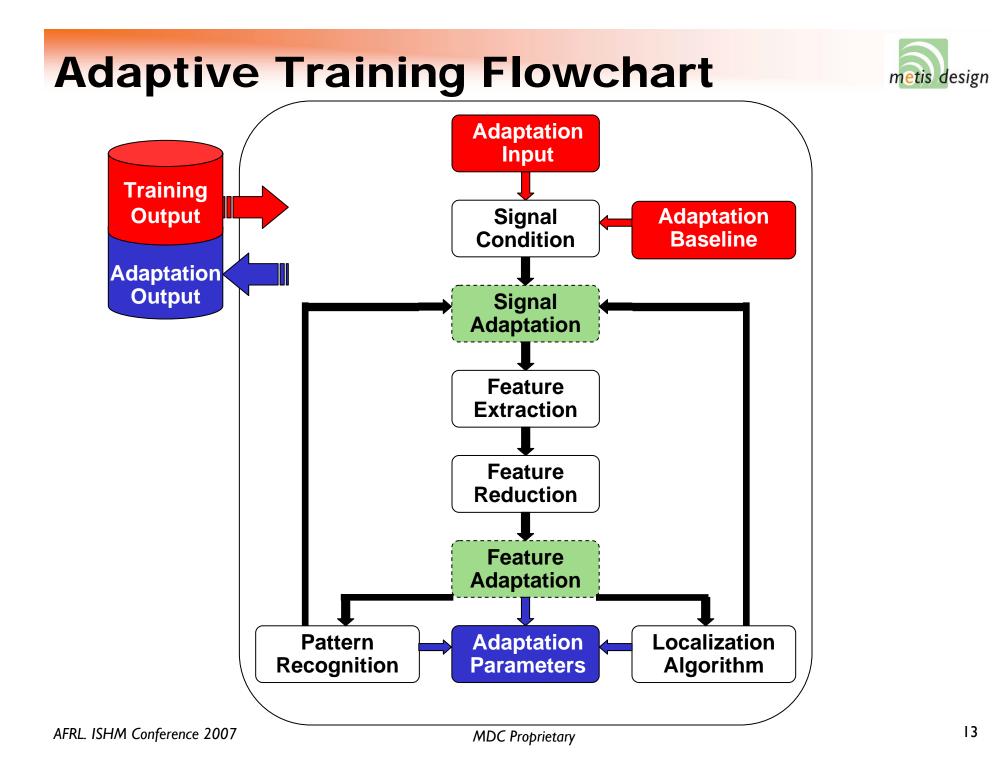
PREDICTED	No D	No Damage Drilled H		d Hole	Delamination			Imp act						
ACTUAL		ND	1 _{/32} "	1 _{/5} "	*4"	1/2"	*/4"	1/2"	1"	1.5"	4"	8"	16"	32"
No Damage	ND	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Drilled Hole	1/32"	0%	86 %	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	1 _{/8} "	0%	53%	47%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	¥"	0%	0%	0%	44%	56%	0%	0%	0%	0%	0%	0%	0%	0%
	1/2"	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%
Delamination	*4"	0%	0%	0%	0%	0%	99 %	1%	0%	0%	0%	0%	0%	0%
	1/2"	0%	0%	0%	0%	0%	58%	30 %	12%	0%	0%	0%	0%	0%
	1"	0%	0%	0%	0%	0%	1%	9%	58 %	32%	0%	0%	0%	0%
	1.5"	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%
Imp act	4"	0%	0%	0%	0%	0%	0%	0%	0%	0%	76 %	23%	1%	0%
	8"	0%	0%	0%	0%	0%	0%	0%	0%	0%	6%	33%	61%	0%
	16"	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	98 %	0%
	32"	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	14%	86%

• K-Nearest Neighbor (KNN) pattern recognition code employed

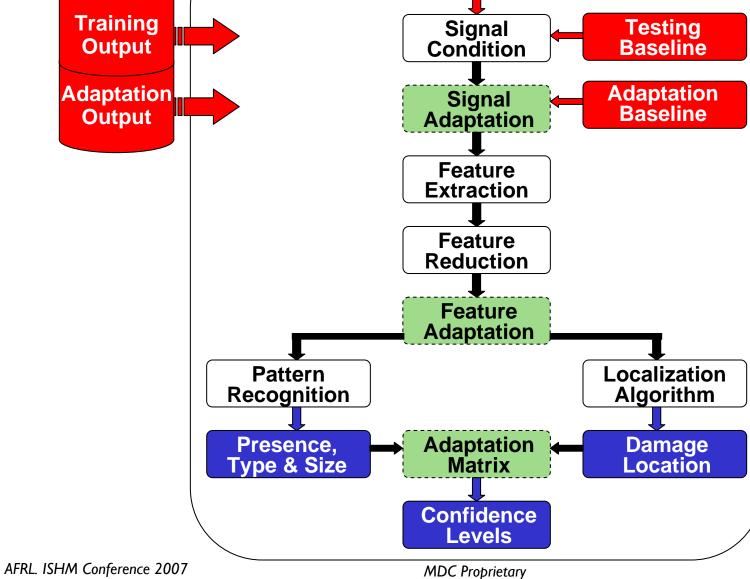
- supervised learning algorithm
- > state based on majority category of optimized "K" nearest data sets

• Confusion matrix shows statistical accuracy of KNN predictions AFRL. ISHM Conference 2007 MDC Proprietary 10

Pattern Recognition Discussion


- Results of PR-based methodology have been very successful
 - > obtained using an optimized K-Nearest Neighbor code
 - > 100% presence accuracy without any false positives or missed damage
 - > 100% type of damage accuracy without any mis-classifications
 - > 99.9% severity prediction including adjacent levels (77% without)
- Sufficient results for technician to make a repair decision
 - > achieve "adjacent" results by intelligently selecting severity boundaries
 - > accuracy would improve with additional training data
- Achieved using separate plates for training and testing
 - > broad implications for feasibility of eventual commercial implementation
 - single validated training data set needs to be deployed for entire fleet
 - > can account for variability in sensor fabrication and placement

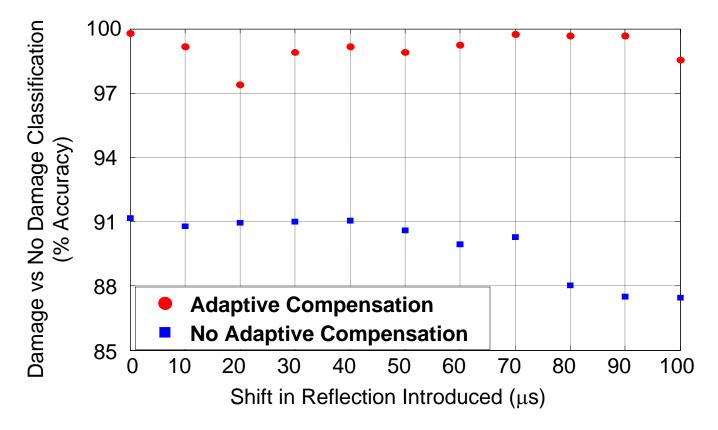
AFRL. ISHM Conference 2007
AFRL. ISHM Conference 2007
MDC Proprietary


Adaptive Compensation for PR

- Adaptation modules inserted at the signal and feature levels
 - transformation vectors for addition/subtraction, scaling and translating
 - > operations performed in multiple domains (time, frequency, wavelet, etc)
- Adaptive testing executed similarly to standard test procedure
 baseline from "known good state" used to accommodate perturbation
 assumes that baseline is collected within a known no-damage condition
 assumes difference between baselines are within tolerable threshold
- Methodology to compensate for small perturbations in signals
 - > uses perturbed training input from simulated and/or experimental data
 - > goal of minimizing impact on the algorithm accuracy
 - > adaptation parameters are locked after training for adaptive testing
 - confidence levels for each state as a function of perturbation level

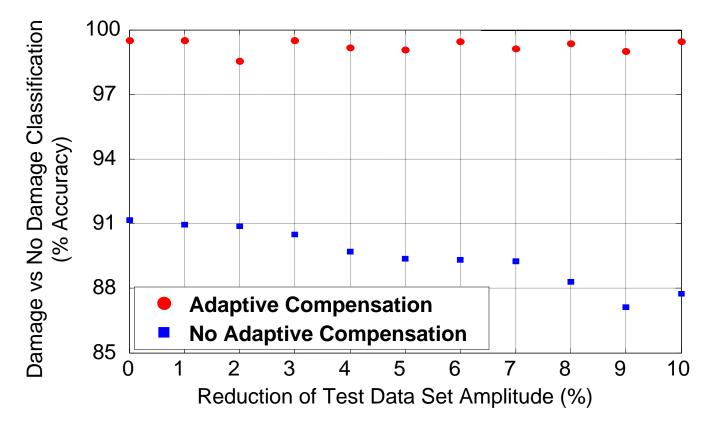
Adaptive Testing Flowchart

metis design


Simulated Implementation

- Application of this adaptive methodology is presented
 - > goal to achieve first-order feasibility validation
 - uses the experimental data collected previously for PR study
 - simulated perturbations were introduced into baseline and test signals
 - subsequently Adaptive Training and Testing flowcharts were executed
- Three types of perturbations simulated separately
 - ▹ time delay between 0-100µs
 - uniform amplitude attenuation between 0-10%
 - central frequency shift between 0-10%
- Compared with no adaptation (note that previous PR results had included adaptation for sensor variability, excluded here)

Time Domain Perturbation



- Time delay between 0-100µs was introduced
- Represents change from repair moving a boundary condition
- Adaptation methodology is able to maintain >97% accuracy
- Traditional PR methodology accuracy degrades to <87%

Energy Domain Perturbation

- Uniform amplitude attenuation between 0-10% was introduced
- Replicates a degraded sensor bondline
- Adaptation methodology is able to maintain >98% accuracy
- Traditional PR methodology accuracy degrades to <87%

AFRL. ISHM Conference 2007

Frequency Domain Perturbation metis design 100 Damage vs No Damage Classification 97 (% Accuracy) 94 91 88 **Adaptive Compensation No Adaptive Compensation** 85 2 3 5 6 7 8 9 10 4 0 Change in Test Data Set Center Frequency (%)

- Central frequency shift between 0-10% was introduced
- Seen in ageing from microcracks reducing material modulus
- Adaptation methodology is able to maintain >95% accuracy
- Traditional PR methodology accuracy degrades to <85%

Conclusions

- Adaptive compensation SHM methodology presented
 - > accommodates perturbations caused by ageing, maintenance & repairs
 - designed to maintain/account for damage detection algorithm accuracy
 - Flowcharts given for training algorithm and adaptation modules, testing
 - adaptation modules are inserted at both the signal and feature level
 - transforms based upon differences between original and new baseline
- Damage detection results presented with simulated ageing
 - > perturbations up to 10% in signal time, energy and frequency domains
 - standard algorithm exhibits decreasing accuracy with more variability
 - > adaptive algorithm maintains accuracy by incorporating new baselines
- Successfully demonstrates feasibility of adaptive modules to compensate for signal perturbations not attributable to damage
 - work remains to fully develop methodology for commercial applications
 - extend investigation to damage type, severity and location
 - > experimental validation beyond pure simulation
- Using analytical and/or finite element models to train for perturbations AFRL ISHM Conference 2007 MDC Proprietary

Acknowledgments

- The initial pattern recognition portion of this research was sponsored by the Air Force Research Laboratory Materials and Manufacturing Directorate (AFRL/ML)
 - SBIR Phase I award FA8650-06-M-5026
 - "Damage Identification Algorithms for Composite Structures"
- AFRL program managers:
 - Dr. Richard Hall
 - > 2ndLt William Bridges

