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rMotivation for Research

metis design

« SHM improves reliability, safety & readiness @ reduced costs
» adds weight, consumes power & computational bandwidth
» traditional cables susceptible to EMI, durability & signal attenuation
» scaling SHM for large-area coverage has presented challenges

» Local sensor digitization (US patent 7,373,260 & other pend.)
» convert analog signals into digital data at point-of-measurement (POM)
» eliminates EMI & attenuation issues
» enables serial sensor connections to minimize total cable length
» digital sensor-bus alone not sufficient, cable harness durability concerns

» wireless transmission infeasible, power requirements & regulatory issues
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[Direct-Write (DW) Technology

metis design

« Simple basic principal behind all DW methods
> fine electrically conductive & insulative traces selectively deposited
» directly onto structure or onto an intermediary substrate
» conformal traces create a multifunctional structural component
» CAT-6 equivalent weighs < 25 g per meter of length

* There are multiple DW methods commercially available
» Plasma Flame Spray (PFS) of copper & ceramic (Mesoscribe)
> Jetted Atomized Deposition (JAD) of silver nano-ink & epoxy (Optomec)

« Extensively tested by Boeing
» shown DW traces to be extremely resilient to mechanical loading
» designed impermeable to environmental factors with an encapsulant
» demonstrated in a large scale production environment, FAA approved
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[Benchmark System
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* Present research explored the patent pending concept of a
"cable-free" digital sensor-bus for SHM using DW

« Selected hypothetical SHM system for design process
» 100 digital sensor nodes
» distributed over 100 m total length (straight line or meandering over grid)
» sensors spaced by 0.5 m along bus
» based on requirements derived from Ares V composite interstage

« Design process developed & executed
» appropriate DW methods selected
» conductive & insulative trace & layer dimensions were iteratively chosen
» configuration to achieve desired transmission characteristics identified
» proof-of-concept validation experiment conducted

© 2009 Metis Design Corporation 2009 ISHM Conference 4



Intelli-Connector™
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* Mini-instrumentation for SHM
» digitizing at POI\/I minimizes EMI
» requires less cabling then analog
» enables local logic & computation

« System elements
» concentric piezoelectric elements
» 2 channels 1 MHz 16-bit ADC
» 3.4 MSample/s 8-bit 20Vpp DAC
» programmable waveform & gains
» synchronous to 100ns on CAN bus
» 25 mm diameter x 8 mm, weighs 4 g
» MIL-810/DO-160 tested (TRL 6)
» capable of Lamb wave & AE
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Physical Connectivity :esizn

 SHM nodes considered
> Intelli-Connector™ digital SHM node selected for POM digitization
» next generation Intelli-Connector™ HS designed in parallel w/sensor-bus

« Hardware Compatibility

» communication: differential controller area network (CAN), requires 2
parallel conductors (high & low) w/impedance 100-130 Q

» synchronization: high-speed RS-422 digital differential sync protocol,
requires 2 parallel conductors (high & low) w/impedance 100-130 Q

» power: 108 mA max current draw, standby current draw of 30 mA; 3.5 A
benchmark assumes 1 exciting node & 6 sensing nodes at a time @ 28V

» shielding: parallel shield traces should separate CAN & sync traces,

top/bottom layers couples untwisted pairs & protects against EMI
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Conductor Break-Out Methods
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« Connectors installed over DW traces
» creating 3-D via’s are very difficult
» traces are too close together
» impedance break on bus trunk may cause communication reflections
» connectors add weight & potentially a failure point

« Bonding hardware and/or flex directly over the DW traces
» alignment complexities
» traces below sensors may interfere with SHM methods

« Deposit DW traces over flexible circuit stub (“flex-tail”)
» flex-circuit already conceived for HS node power/comm connection
» bonded to structure during DW integration, selectively exposed copper
» durable & reliable solution with minimum mass impact
» can also add connector to flex-tail for compatibility with other sensors
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‘FIex-TaiI Feasibility Experiment 1)) .

» Flex-circuits bonded to plates, over-written w/PFS & JAD traces

* Very positive results
» nothing melted
» good electrical continuity
» no mechanical issues
» traces appeared to follow multiple stacked layers

« Small issue to be considered in final design
» during PFS process metallic powder floats around
» gaps, seams, and features on plate trap powder
» in most cases powder could be brushed/blown away
» powder melted & formed thin conductive path when trapped near traces
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|SHM Method Compatibility
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 Investigate effect of DW traces on wave propagation for SHM
» concerns for GW scatter points, can change phase & amplitude
» experiment conducted to observe interaction of GW w/DW traces
» separate plates tested w/maximum thickness PFS & JAD traces

 CFRP plates measuring 75 x 75 x 0.25 cm thick tested
> instrumented w/3 PZT sensor pairs bonded opposite to pair of DW traces
» pitch-catch & pulse-echo measurements collected before & after DW
» data collected over a range of frequencies (50-500 kHz in 50 kHz steps)
» signals were filtered using a zero-phase, high-order Butterworth filter
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ﬁ:’itch-Catch & Pulse-Echo for PFS
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 Measureable difference in pitch-catch signal across PFS traces
» amplitude metric yielded average change ~26%
» shape/phase correlation metric yielded average change < 2%
» indicates some attenuation but no significant phase change

« Small but detectable reflection from PFS in pulse-echo signal

» difference between the signals taken before and after the deposition
» DW relative to PZT is estimated 18 mm from actual location by reflection
» some attenuative effect on signals, would not expected to affect SHM
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[Effect of PFS on SHM Algorithms
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« Test to explicitly observe impact to SHM algorithms
» shear-gel coupled magnet to represent damage (12.7 mm x 6 mm tall)
» baseline 30 kHz pulse-echo signals collected to obtain threshold values
> trials conducted with magnet placed on either side of PFS traces

 PFS does not effect detection, locating or range (40 cm here)
> clear reflection above threshold from magnet in both cases
> location estimated 2.5 mm from actual position for closer magnet
> location estimated 5.0 mm from actual position for magnet opposite PFS
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[Effect of JAD Traces

metis design

 ldentical test matrix conducted for JAD traces
> smaller difference observed comparing response wi/silver traces
» amplitude metric yielded average change ~9%
» shape/phase correlation metric yielded average change < 1%
» DW relative to PZT is estimated 2.5 mm from actual location by reflection

* Thin polymer layer employed as mitigation technique
» method demonstrated through prior research
» decouples features through low stiffness, damping & acoustic mismatch
> 125 um thick PEEK pressure sensitive adhesive (PSA) applied
> prevents shorting to plate & provides moisture barrier
> potentially a simple means for removal and/or repair of DW traces

© 2009 Metis Design Corporation 2009 ISHM Conference 12



[Electrical Compatibility
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* Physically connecting hardware to DW sensor-bus not sufficient
» communication & sync traces must match prescribed impedance
» power lines must carry required current over desired total length
» shield layers need to be sized to provide the desired protection

* Node # & bus length dictated by materials, geometry & spacing
> collect toolset of equations to be used for design optimization
» measure the electrical properties of common DW materials
> resistance — function of material conductivity & trace area
» impedance — function of insulator dielectric, trace geometry & spacing

* Applicable standards
> MIL-STD-275E & IPC-2221: generic standards on printed board design
» MIL-STD-461F: requirements EMI characteristics of equipment
» MIL-STD-810E: environmental conditions for airborne equipment
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[Communication Traces
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« Controller Area Network (CAN) selected (ISO 11898)

» mature protocol with more than 20 years of in-service applications

> relatively high-speed, max transmission speed of 1 Mbit/sec

> theoretically up to 2032 devices over 1,000 m (practical limitations exist)
» serial architecture, allows devices to communicate without host PC

» forgiving network topology, 100-130 Q2 impedance, good error handling

|deal CAN bus topology Physical bit representation
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[CAN Optimization
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« Spice simulation model built to optimize CAN configuration
> theoretical values for good conductors used
» true values for CAN controller elements of SHM nodes used
> input of high/low CAN pulse pair, differential voltage output for final node

* For digital communication key parameter is impedance
» very complex function, generally need small traces close together
» function of conductor trace width, spacing, thickness & conductivity
» function of in-plane shield trace & out-of-plane shield layer spacing
» function of insulator dielectric constant between conductors and shields

* Traces determined to be 0.25 mm x 10 ym thick w/0.5 mm pitch

» much finer than PFS is capable of depositing
» only JAD considered for CAN traces
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LJAD Experimental Characterization
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« Experimental procedure conducted to characterize JAD
» measure conductivity of silver nano-ink traces
» verify tolerances & manufacturing capabilities of method

« JAD was capable of achieving required geometry
> resistance 103 x expected/desired values (1 kQQ/m compared to 1 QO/m)
» thickness was issue, assume better capabilities in near future

« Screen-printing process developed for present research
» silver epoxy spread over chemical-etched steel shim templates
» much thicker silver traces can be patterned than current JAD
» finer pitch traces possible than PFS (no overspray)
» updated traces determined to be 0.33 mm x 125 ym thick w/1.5 mm pitch
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Eynch ronization Traces
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* Independent high-speed synchronization desired for SHM

« RS-422 protocol selected
» well defined standard
» chips available to implement
» same impedance range as CAN

« Therefore differential high/low sync traces would have identical
geometry as CAN & follow the same fabrication process
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[Power Traces
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* Power trace design dominated by 3 factors
» maximum voltage carrying capabilities (needs to be at least 28 V)
» maximum current carrying capabilities (needs to be at least 3.5 A)
» material resistivity

* Material resistivity dictates how many total nodes can be
connected to the bus over what total length

* Only PFS could meet constraints
» large area traces
» high conductivity
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[PFS Trace Voltage & Current Limits
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 Minimum trace spacing
» 0.1 mm for 0 to 50 V. or V,¢

> Type A5 — assemblies w/external conductors & conformal coating
» Table | in 4Ain MIL-STD-275E and Table 6-1 in the IPC-2221 standard

* Minimum conductor cross sectional area
> 0.16 mm? for 3.5 A with a 2x factor of safety

» for external etched copper conductors
» Figure 4A in MIL-STD-275E and Figure 6-4 in the IPC-2221 standard

* Assumptions
» 100 nodes connected to the power trace, 1 exciting & 6 sensing at a time
» nodes are spaced 2 m (~1.5 feet)

> power dissipated in the nodes is constant regardless of voltage
> traces have a conductivity equal to 58 x 106 S/ m (IACS at 20°C)
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[PFS Trace Total Node/Length Limit
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« Power trace resistance limits total # nodes and/or bus length
» system treated as large circuit diagram solved by Kirchhoff's laws
» 93 nodes consuming 0.8W in standby & 7 nodes consuming 3W sensing
» each trace between nodes modeled as small resister
» assume trace conductivity equal to 58x10° S/m (IACS at 20°C)
> equations dictated minimum cross-sectional area of ~1 mm?2

Trace area 0.58 mm? 0.77 mm? 1.16 mm?
(1.5x0.3mm) | (1.5x0.5mm) | (3.0x 0.5 mm)
Resistance per length 30.0mQ/m 22.2mQ/m 14.8 mQ / m

Bus input voltage 28 V¢ 28 V¢ 28 V¢

Last node voltage (needs 24 V) 20.3 V¢ 22.8 Vpe 24.8 Vpc
Bus input current 4.2 Apc 3.9 A 3.7 Apc
Bus input power 118 W 110 W 104 W

% power dissipated in traces 20 % 13 % 8 %
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‘PFS Experimental Characterization

metis design

« Voltage & current limits
> 0.1, 0.2 & 0.3 mm? traces deposited w/total length of ~5 m (2.5 mm pitch)
» 40 V. power supply connected to each pair of traces, current measured
> all traces successfully carried 9.5 Ay for 5+ minutes without failure

« Conductivity measurements
» electrical conductivity related to trace resistance by R=L / (c *A)
> 8x108 S/m for 0.1 mm?, 13x10% S/m for 0.2 mm?2, 17x10% S/m for 0.3 mm?
> low compared to standard due to impurities & geometry assumptions

« Consequence of lower conductivity
» fewer nodes can exist on bus as designed
» nodes need to be spaced closer together
» otherwise traces will need to be re-sized
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[Shield Traces
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« Shield layers serve to protect CAN & sync from EMI
» 1 um is an excellent shield against electric interference up to 1 MHz
» 10 um is a mild shield against magnetic interference up to 1 MHz

« Shield layer plays an important role in impedance calculation
> if placed far enough away from traces they have little influence
> in-plane shield traces can be neglected if pitch is same as conductors
» out-of-plane shield cannot be neglected within reasonable geometry
» out-of-plane shield designed to be 0.5 mm above and below conductors
» remaining volumes between conductors & shields filled with dielectric
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[Electrical Insulation
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» Dielectric material electrically isolates all conductors
» PFS compatible ceramics offer good dielectric values, too stiff for SHM
» JAD compatible UV-curable epoxies w/good stiffness, cannot be thick

« Spray-on method devised, materials selected to meet criteria
» dielectric constant of ~3 between 10 kHz and 1 MHz (ASTM D-150)
» service temperature of 250° C to survive a subsequent PFS process,
» room temperature cure cycle to minimize the effect of mismatched CTE
> viscosity suitable for spraying

« Multiple epoxies were procured that met these criteria
» range of viscosities tested for validation of manufacturing process
» actual dimensions of these layers were dictated by conductor designs
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[Overall Configuration
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« Great challenge was system integration
» maintain optimized characteristics of all elements
» minimize overall bus geometry & mass to maintain benefits of DW
» consider fabrication processes so that configuration could be made

« Evident neither PFS or JAD able to be exclusively used bus
» PFS thick enough for power but too poor tolerances for communication
» JAD accurate enough for controlled impedance but too thin for power
» hybrid approach is necessary to achieve desired functionality

Shield

Power Ground Shield Sync H Sync L Shield CANH CAN L Shield Ground Power

Shield

(Not to scale)

/i
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[Conductor Trace Dimensions
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Communication & Synchronization
» CAN (+/-) and sync (+/-) traces 330 um x 125 pm thick with 1.5 mm pitch
» size dictated by impedance requirements

Power & Ground
» 2 pairs of 1.25 mm x 1 mm thick with 12 mm effective pitch for 1 mm?
» size dictated by voltage drop per length

Shield

» top & bottom shield layers 10 um thick surround traces with 1 mm pitch
» size dictated by skin depth

Overall dimensions
» 1.35 cm x 1.25 mm thick
» 25 g per meter, total of 2.5 kg for benchmark system (1.5 kg for sensors)
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‘Initial Implementation
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Initial demo required deviation from eventual production design

Physical Connectivity
» Intelli-Connector™ connects to power & CAN through FireWire plug
> flex-tail adapter designed to make connection for demonstration
» Intelli-Connector™ HS sensors are directly compatible w/flex-tail design

Electrical Compatibility
» overall configuration minimized to demonstrate function at reduced risk
» since CAN & sync traces require identical impedance, only CAN written
> since 3 nodes will be used over 1 m, only 1 power pair written (0.5 mm?)

Silk-screen process used instead of thin JAD traces
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Proof-of-Concept Demonstration
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« Digital sensor-bus installed on 75 x 75 x 0.25 cm CFRP plate
» 3 Intelli-Connector™ SHM nodes bonded in isosceles triangle formation
» front-end connected to CAN/USB plug, aft-end to termination resistor

« Magnet to simulate damage (12.7 mm diameter x 6 mm tall)
» Nno communication or power problems were encountered
» across 10 trials without magnet no false positives reported
» across 10 trials with magnet average error in prediction was 7.5 mm

Flex-tail for CAN terminator
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[Summary
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 Research explored the novel application of direct-write to create
a digital sensor-bus for structural health monitoring applications

« Benchmark system of 100 SHM nodes over 100 m was defined
» hardware requirements for communication & power were determined
» analytical tools for trace material & geometry selection were determined
» CAN, sync, power & shield traces were designed
> experimental procedure evaluated electrical properties of DW traces
» Lamb waves used to evaluate DW trace impact on existing algorithms
» designed & implemented proof-of-concept damage localization system

* Overall research successful in achieving goal of demonstring
digital sensor-bus for SHM that does not impact detection
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rSHI\/I W/CNT-Enhanced Composites _ . ) -

e Phase | STTR
» AFOSR award FA9550-09-C-0165, June — October 2009
> Professor Brian Wardle at MIT is a subcontractor

« Carbon Nano-Tubes (CNT) can greatly enhance composites
» MIT has developed FRP laminates w/aligned CNTs grown in-situ
» CNT enhance impact, delamination & fatigue resistance
» SHM capabilities introduced by greatly enhanced conductivity

» Measuse resistance changes w/DW electrode grid & flex-frame

Multiplexing micro-switch
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