

Direct-Write Technology for a Cable-free Digital Sensor-Bus

Seth S. Kessler, Ph.D. skessler@metisdesign.com

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

Motivation for Research

- SHM improves reliability, safety & readiness @ reduced costs
 - > adds weight, consumes power & computational bandwidth
 - > traditional cables susceptible to EMI, durability & signal attenuation
 - scaling SHM for large-area coverage has presented challenges
- Local sensor digitization (US patent 7,373,260 & other pend.)
 - > convert analog signals into digital data at point-of-measurement (POM)
 - eliminates EMI & attenuation issues
 - > enables serial sensor connections to minimize total cable length
 - > digital sensor-bus alone not sufficient, cable harness durability concerns
 - > wireless transmission infeasible, power requirements & regulatory issues

© 2009 Metis Design Corporation

2009 ISHM Conference

Direct-Write (DW) Technology

- Simple basic principal behind all DW methods
 - Fine electrically conductive & insulative traces selectively deposited
 - > directly onto structure or onto an intermediary substrate
 - > conformal traces create a multifunctional structural component
 - CAT-6 equivalent weighs < 25 g per meter of length</p>
- There are multiple DW methods commercially available
 > Plasma Flame Spray (PFS) of copper & ceramic (Mesoscribe)
 > Jetted Atomized Deposition (JAD) of silver nano-ink & epoxy (Optomec)
- Extensively tested by Boeing
 - > shown DW traces to be extremely resilient to mechanical loading
 - designed impermeable to environmental factors with an encapsulant
 - > demonstrated in a large scale production environment, FAA approved

Benchmark System

- Present research explored the patent pending concept of a "cable-free" digital sensor-bus for SHM using DW
- Selected hypothetical SHM system for design process
 - ➤ 100 digital sensor nodes
 - > distributed over 100 m total length (straight line or meandering over grid)
 - ➤ sensors spaced by 0.5 m along bus
 - based on requirements derived from Ares V composite interstage
- Design process developed & executed
 - > appropriate DW methods selected
 - > conductive & insulative trace & layer dimensions were iteratively chosen
 - > configuration to achieve desired transmission characteristics identified
 - proof-of-concept validation experiment conducted

Intelli-Connector™

- Mini-instrumentation for SHM
 > digitizing at POM[™] minimizes EMI
 > requires less cabling then analog
 > enables local logic & computation
- System elements
 - concentric piezoelectric elements
 - ➤ 2 channels 1 MHz 16-bit ADC
 - ➤ 3.4 MSample/s 8-bit 20Vpp DAC
 - > programmable waveform & gains
 - ➤ synchronous to 100ns on CAN bus
 - > 25 mm diameter x 8 mm, weighs 4 g
 - > MIL-810/DO-160 tested (TRL 6)
 - capable of Lamb wave & AE

Physical Connectivity

SHM nodes considered

- ➤ Intelli-Connector[™] digital SHM node selected for POM digitization
- ➤ next generation Intelli-Connector™ HS designed in parallel w/sensor-bus

- Hardware Compatibility
 - communication: differential controller area network (CAN), requires 2 parallel conductors (high & low) w/impedance 100-130 Ω
 - synchronization: high-speed RS-422 digital differential sync protocol, requires 2 parallel conductors (high & low) w/impedance 100-130 Ω
 - power: 108 mA max current draw, standby current draw of 30 mA; 3.5 A benchmark assumes 1 exciting node & 6 sensing nodes at a time @ 28V
 - shielding: parallel shield traces should separate CAN & sync traces, top/bottom layers couples untwisted pairs & protects against EMI

© 2009 Metis Design Corporation

2009 ISHM Conference

Conductor Break-Out Methods

- Connectors installed over DW traces
 - creating 3-D via's are very difficult
 - traces are too close together

- impedance break on bus trunk may cause communication reflections
- connectors add weight & potentially a failure point
- Bonding hardware and/or flex directly over the DW traces
 - ➤ alignment complexities
 - traces below sensors may interfere with SHM methods
- Deposit DW traces over flexible circuit stub ("flex-tail")
 - Flex-circuit already conceived for HS node power/comm connection
 - bonded to structure during DW integration, selectively exposed copper
 - durable & reliable solution with minimum mass impact
 - can also add connector to flex-tail for compatibility with other sensors

Flex-Tail Feasibility Experiment

- metis design
- Flex-circuits bonded to plates, over-written w/PFS & JAD traces
- Very positive results
 - nothing melted
 - good electrical continuity
 - \succ no mechanical issues
 - traces appeared to follow multiple stacked layers
- Small issue to be considered in final design
 - during PFS process metallic powder floats around
 - > gaps, seams, and features on plate trap powder
 - in most cases powder could be brushed/blown away
 - > powder melted & formed thin conductive path when trapped near traces

SHM Method Compatibility

- Investigate effect of DW traces on wave propagation for SHM
 - > concerns for GW scatter points, can change phase & amplitude
 - experiment conducted to observe interaction of GW w/DW traces
 - separate plates tested w/maximum thickness PFS & JAD traces
- CFRP plates measuring 75 x 75 x 0.25 cm thick tested
 - ➤ instrumented w/3 PZT sensor pairs bonded opposite to pair of DW traces
 - pitch-catch & pulse-echo measurements collected before & after DW
 - data collected over a range of frequencies (50-500 kHz in 50 kHz steps)
 - > signals were filtered using a zero-phase, high-order Butterworth filter

© 2009 Metis Design Corporation

Pitch-Catch & Pulse-Echo for PFS

- Measureable difference in pitch-catch signal across PFS traces
 - ➤ amplitude metric yielded average change ~26%
 - > shape/phase correlation metric yielded average change < 2%</p>
 - indicates some attenuation but no significant phase change
- Small but detectable reflection from PFS in pulse-echo signal
 - between the signals taken before and after the deposition
 - DW relative to PZT is estimated 18 mm from actual location by reflection
 - some attenuative effect on signals, would not expected to affect SHM

Effect of PFS on SHM Algorithms

- Test to explicitly observe impact to SHM algorithms
 - shear-gel coupled magnet to represent damage (12.7 mm x 6 mm tall)
 - baseline 30 kHz pulse-echo signals collected to obtain threshold values
 - trials conducted with magnet placed on either side of PFS traces
- PFS does not effect detection, locating or range (40 cm here)
 - clear reflection above threshold from magnet in both cases
 - Iocation estimated 2.5 mm from actual position for closer magnet
 - Iocation estimated 5.0 mm from actual position for magnet opposite PFS

Effect of JAD Traces

- Identical test matrix conducted for JAD traces
 - Smaller difference observed comparing response w/silver traces
 - > amplitude metric yielded average change ~9%
 - shape/phase correlation metric yielded average change < 1%</p>
 - > DW relative to PZT is estimated 2.5 mm from actual location by reflection
- Thin polymer layer employed as mitigation technique
 - > method demonstrated through prior research
 - > decouples features through low stiffness, damping & acoustic mismatch
 - ➤ 125 µm thick PEEK pressure sensitive adhesive (PSA) applied
 - prevents shorting to plate & provides moisture barrier
 - > potentially a simple means for removal and/or repair of DW traces

Electrical Compatibility

- Physically connecting hardware to DW sensor-bus not sufficient
 - communication & sync traces must match prescribed impedance
 - > power lines must carry required current over desired total length
 - > shield layers need to be sized to provide the desired protection
- Node # & bus length dictated by materials, geometry & spacing
 - collect toolset of equations to be used for design optimization
 - measure the electrical properties of common DW materials
 - resistance function of material conductivity & trace area
 - impedance function of insulator dielectric, trace geometry & spacing
- Applicable standards
 - ➢ MIL-STD-275E & IPC-2221: generic standards on printed board design
 - > MIL-STD-461F: requirements EMI characteristics of equipment
 - MIL-STD-810E: environmental conditions for airborne equipment

Communication Traces

- Controller Area Network (CAN) selected (ISO 11898)
 - > mature protocol with more than 20 years of in-service applications
 - relatively high-speed, max transmission speed of 1 Mbit/sec
 - > theoretically up to 2032 devices over 1,000 m (practical limitations exist)
 - ➤ serial architecture, allows devices to communicate without host PC
 - > forgiving network topology, 100-130 Ω impedance, good error handling

CAN Optimization

- Spice simulation model built to optimize CAN configuration
 - theoretical values for good conductors used
 - true values for CAN controller elements of SHM nodes used
 - > input of high/low CAN pulse pair, differential voltage output for final node
- For digital communication key parameter is impedance
 - > very complex function, generally need small traces close together
 - function of conductor trace width, spacing, thickness & conductivity
 - function of in-plane shield trace & out-of-plane shield layer spacing
 - function of insulator dielectric constant between conductors and shields
- Traces determined to be 0.25 mm x 10 μm thick w/0.5 mm pitch
 - > much finer than PFS is capable of depositing
 - only JAD considered for CAN traces

JAD Experimental Characterization

- Experimental procedure conducted to characterize JAD
 > measure conductivity of silver nano-ink traces
 - verify tolerances & manufacturing capabilities of method
- JAD was capable of achieving required geometry
 resistance 10³ x expected/desired values (1 kΩ/m compared to 1 Ω/m)
 thickness was issue, assume better capabilities in near future
- Screen-printing process developed for present research
 - > silver epoxy spread over chemical-etched steel shim templates
 - much thicker silver traces can be patterned than current JAD
 - finer pitch traces possible than PFS (no overspray)
 - ➤ updated traces determined to be 0.33 mm x 125 µm thick w/1.5 mm pitch

Synchronization Traces

- Independent high-speed synchronization desired for SHM
- RS-422 protocol selected
 - well defined standard
 - > chips available to implement
 - ➤ same impedance range as CAN
- Therefore differential high/low sync traces would have identical geometry as CAN & follow the same fabrication process

Power Traces

- Power trace design dominated by 3 factors
 - > maximum voltage carrying capabilities (needs to be at least 28 V)
 - > maximum current carrying capabilities (needs to be at least 3.5 A)
 - material resistivity
- Material resistivity dictates how many total nodes can be connected to the bus over what total length
- Only PFS could meet constraints
 - Iarge area traces
 - high conductivity

PFS Trace Voltage & Current Limits

- Minimum trace spacing
 - \succ 0.1 mm for 0 to 50 V_{DC} or V_{AC}
 - > Type A5 assemblies w/external conductors & conformal coating
 - ➤ Table I in 4A in MIL-STD-275E and Table 6-1 in the IPC-2221 standard
- Minimum conductor cross sectional area
 - > 0.16 mm² for 3.5 A with a 2x factor of safety
 - ➢ for external etched copper conductors
 - ➤ Figure 4A in MIL-STD-275E and Figure 6-4 in the IPC-2221 standard

Assumptions

- > 100 nodes connected to the power trace, 1 exciting & 6 sensing at a time
- > nodes are spaced $\frac{1}{2}$ m (~1.5 feet)
- > power dissipated in the nodes is constant regardless of voltage
- > traces have a conductivity equal to 58 x 10⁶ S / m (IACS at 20°C)

PFS Trace Total Node/Length Limit

- Power trace resistance limits total # nodes and/or bus length
 - > system treated as large circuit diagram solved by Kirchhoff's laws
 - > 93 nodes consuming 0.8W in standby & 7 nodes consuming 3W sensing
 - each trace between nodes modeled as small resister
 - ➤ assume trace conductivity equal to 58x10⁶ S/m (IACS at 20°C)
 - equations dictated minimum cross-sectional area of ~1 mm²

Trace area	0.58 mm ²	0.77 mm ²	1.16 mm ²
	(1.5 x 0.3 mm)	(1.5 x 0.5 mm)	(3.0 x 0.5 mm)
Resistance per length	30.0 mΩ / m	22.2 mΩ / m	14.8 mΩ / m
Bus input voltage	28 V _{DC}	28 V _{DC}	28 V _{DC}
Last node voltage (needs 24 V_{DC})	$20.3 V_{DC}$	22.8 V _{DC}	24.8 V _{DC}
Bus input current	4.2 A _{DC}	3.9 A _{DC}	3.7 A _{DC}
Bus input power	118 W	110 W	104 W
% power dissipated in traces	20 %	13 %	8 %

© 2009 Metis Design Corporation

PFS Experimental Characterization

- Voltage & current limits
 - > 0.1, 0.2 & 0.3 mm² traces deposited w/total length of ~5 m (2.5 mm pitch)
 - > 40 V_{DC} power supply connected to each pair of traces, current measured
 - \succ all traces successfully carried 9.5 A_{DC} for 5+ minutes without failure
- Conductivity measurements
 - > electrical conductivity related to trace resistance by R=L / (σ *A)
 - ➤ 8x10⁶ S/m for 0.1 mm², 13x10⁶ S/m for 0.2 mm², 17x10⁶ S/m for 0.3 mm²
 - Iow compared to standard due to impurities & geometry assumptions
- Consequence of lower conductivity
 - Fewer nodes can exist on bus as designed
 - nodes need to be spaced closer together
 - otherwise traces will need to be re-sized

Shield Traces

- Shield layers serve to protect CAN & sync from EMI
 - \geq 1 µm is an excellent shield against electric interference up to 1 MHz
 - \geq 10 µm is a mild shield against magnetic interference up to 1 MHz
- Shield layer plays an important role in impedance calculation

 if placed far enough away from traces they have little influence
 in-plane shield traces can be neglected if pitch is same as conductors
 out-of-plane shield cannot be neglected within reasonable geometry
 out-of-plane shield designed to be 0.5 mm above and below conductors
 remaining volumes between conductors & shields filled with dielectric

Electrical Insulation

- Dielectric material electrically isolates all conductors
 > PFS compatible ceramics offer good dielectric values, too stiff for SHM
 > JAD compatible UV-curable epoxies w/good stiffness, cannot be thick
- Spray-on method devised, materials selected to meet criteria
 > dielectric constant of ~3 between 10 kHz and 1 MHz (ASTM D-150)
 > service temperature of 250° C to survive a subsequent PFS process,
 > room temperature cure cycle to minimize the effect of mismatched CTE
 > viscosity suitable for spraying
- Multiple epoxies were procured that met these criteria
 - range of viscosities tested for validation of manufacturing process
 - > actual dimensions of these layers were dictated by conductor designs

Overall Configuration

- Great challenge was system integration
 - maintain optimized characteristics of all elements
 - minimize overall bus geometry & mass to maintain benefits of DW
 - > consider fabrication processes so that configuration could be made
- Evident neither PFS or JAD able to be exclusively used bus
 - PFS thick enough for power but too poor tolerances for communication
 - JAD accurate enough for controlled impedance but too thin for power
 - hybrid approach is necessary to achieve desired functionality

© 2009 Metis Design Corporation

Conductor Trace Dimensions

- Communication & Synchronization
 - > CAN (+/-) and sync (+/-) traces 330 μ m x 125 μ m thick with 1.5 mm pitch
 - size dictated by impedance requirements
- Power & Ground
 - \geq 2 pairs of 1.25 mm x 1 mm thick with 12 mm effective pitch for 1 mm²
 - size dictated by voltage drop per length
- Shield
 - \succ top & bottom shield layers 10 µm thick surround traces with 1 mm pitch
 - ➢ size dictated by skin depth
- Overall dimensions
 - ➤ 1.35 cm x 1.25 mm thick
 - > 25 g per meter, total of 2.5 kg for benchmark system (1.5 kg for sensors)

Initial Implementation

- Initial demo required deviation from eventual production design
- Physical Connectivity
 - ➤ Intelli-Connector[™] connects to power & CAN through FireWire plug
 - Flex-tail adapter designed to make connection for demonstration
 - ➤ Intelli-Connector™ HS sensors are directly compatible w/flex-tail design
- Electrical Compatibility
 - > overall configuration minimized to demonstrate function at reduced risk
 - > since CAN & sync traces require identical impedance, only CAN written
 - > since 3 nodes will be used over 1 m, only 1 power pair written (0.5 mm²)
- Silk-screen process used instead of thin JAD traces

Proof-of-Concept Demonstration

- Digital sensor-bus installed on 75 x 75 x 0.25 cm CFRP plate ➤ 3 Intelli-Connector[™] SHM nodes bonded in isosceles triangle formation front-end connected to CAN/USB plug, aft-end to termination resistor
- Magnet to simulate damage (12.7 mm diameter x 6 mm tall)
 - > no communication or power problems were encountered
 - across 10 trials without magnet no false positives reported
 - > across 10 trials with magnet average error in prediction was 7.5 mm

Summary

- Research explored the novel application of direct-write to create a digital sensor-bus for structural health monitoring applications
- Benchmark system of 100 SHM nodes over 100 m was defined
 - hardware requirements for communication & power were determined
 - > analytical tools for trace material & geometry selection were determined
 - > CAN, sync, power & shield traces were designed
 - > experimental procedure evaluated electrical properties of DW traces
 - Lamb waves used to evaluate DW trace impact on existing algorithms
 - designed & implemented proof-of-concept damage localization system
- Overall research successful in achieving goal of demonstring digital sensor-bus for SHM that does not impact detection

SHM w/CNT-Enhanced Composites

- Phase I STTR
 - AFOSR award FA9550-09-C-0165, June October 2009
 - Professor Brian Wardle at MIT is a subcontractor
- Carbon Nano-Tubes (CNT) can greatly enhance composites
 - > MIT has developed FRP laminates w/aligned CNTs grown in-situ
 - CNT enhance impact, delamination & fatigue resistance
 - SHM capabilities introduced by greatly enhanced conductivity
- Measuse resistance changes w/DW electrode grid & flex-frame

Acknowledgments

- This research was sponsored by NASA Ames Research Center
 - SBIR Phase I award NNX09CC57P
 - "Cable-Free Sensor-Bus for SHM of Large-Area Composites"
 - program manager: Edward Martinez
 - > contributions from: Carissa Tudryn, George Studor & Jim Miller
- The Boeing Company
 - joint development of original concept & supporting fabrication
 - > contributions from: Jeffrey Duce, Dr. David Banks & Dr. Jeong-Beom Ihn
 - fabrication support from: Ryan Wilhelm & Scott Johnston
- Metis Design Corporation
 - > Dr. Christopher Dunn, Michael Borgen & Dr. Ajay Raghavan
 - > original SHM hardware funded by AFRL/VA award FA9550-05-C-0024

2009 ISHM Conference

➢ new HS SHM hardware fundeded by AFRL/VA award FA8650-08-C-3860

metis design

