CRYO-COOLING THERMOGRAPHY:
Health Monitoring of Composite Cryogenic Fuel Tanks

Seth Kessler
Massachusetts Institute of Technology
April 10, 1999
INTRODUCTION

- Composite fuel tanks for RLV’s
 - crucial for weight reduction
 - structural load path
 - cryogenic hypergolic fuel

- Health monitoring system necessary
 - safety
 - longevity of vehicle, investment
HEALTH MONITORING

- Visual inspection and Ultrasonic ground testing
 - expensive labor costs
 - long down times
 - pre/post flight
 - difficult with TPS and insulation or high damping ratio

- Embedded gauges
 - strain, thermocouples, crack gauge, piezo
 - high manufacturing costs
 - complicated manufacturing issues
 - difficult interpretation
SOLUTION

- Infrared Thermographic Imaging
- Non-destructive, non-contact, simple

Processing Unit ➔ IR Camera

Heating/Cooling Source
Theory

Thermal conductivity and density dependant
Phase Lag w/Fourier analysis

\[\frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} \]

Thermal Diffusivity

\[T(x, t) = \frac{I_0}{\omega} e^{\omega x} e^{j\omega t} \]

Thermal Wave

\[\frac{1}{\sqrt{\frac{2 \pi}{\frac{\partial}{\partial x}}} \frac{\partial}{\partial c}} \]

Thermal Length

Thermal conductivity and density dependant
Phase Lag w/Fourier analysis
THERMOGRAPHY

- **Pulse Thermography**
 - flash lamps for excitation on surface
 - local temperature variation produced on surface
 - thermal waves very damped, short travel, limited energy

- **Lock-in Thermography**
 - modulated heat source
 - reflection of thermal wave, amplitude & phase detected
 - surface reflections or outside sources eliminated
 - depth dependent on how low modulating frequency; slow!
Cooling Down Thermography

- CDT new approach
 - samples are pre-heated to a uniform temperature
 - infrared camera used to monitor temperature decay
 - quality control in thermally treated products originally

- Differences
 - Thermal perturbation travels half the distance
 - quicker results, better resolution
 - less flexible, suited to specific problems

- Applications
 - deep defects and delaminations
 - insulating and coated materials
Fig. 7 - Phase image with lock-in thermography at 0.0037 Hz.

Fig. 8 - Images with cooling down thermography on same sample as in fig. 8.
(left: after 1.5 minutes; right: after 4 minutes)

“Cooling Down Thermography: principle and results for NDE” -- Danesi, Salerno, Wu, Busse
CRYOGENIC APPLICATION

- Cryo-Cooling Thermography (CCT)
- Adaptation of CDT to suit cryo-tank applications
- Generally improves detection of flaws in composites
 - High conductivity of CFRP
 - High insulative properties of GFRP
- Faster, Cheaper and more Efficient
 - Cryogens appear distinctly, quickly because of extreme \(T \)
 - No heating source required, can use energy of system often
 - Less post processing then with heat waves
EXPERIMENTAL SETUP

- Stainless steel tray on foam insulation to contain LN2
- 150L dewar of LN2, refill tray every 10 minutes
- 20 mil AL plate to provide uniformly cooled flat surface
- Inframetrics Thermocam™ 1000 with focused lens
- Images monitored and captured on laptop computer
- Samples placed on cooling surface, immediate results
TEST MATRIX

- **Embedded** Teflon, epoxy joints and sensors in CFRP
- **Cracks** due to thermal loading in untoughened epoxy
- **Voids** in airfoil sections
- **Disbonds** in rotor blades
- **Impact** damage in insulating sandwich panel
- **Leak** detection through insulation
- **Damage** due to thermal shock in pressurized cylinder
EMBEDDED
CRACKING
DISBOND
VOIDS
IMPACT
LEAKS
DAMAGED CYLINDER

- Composite cylinder, 1” diameter, 1’ long
- One end sealed with steel plate and epoxy
- Open end sealed with vacuum bag and tape

- Filled with LN2, sealed to allow gas to pressurize
- Could not cause cracks, so tank appeared uniform
CONCLUSION

- CCT very successful method of NDE for composites
- One of few techniques that can investigate insulation
- Practical for many aerospace applications
 - quick and simple
 - economical and portable
 - accurate and reproducible
- Procedure depends on application, can be specific
- Viable option for in flight fuel tank monitoring
FUTURE WORK

- Same line of tests with more controlled specimens
- Small scale pressurized fuel tank
- Time constant characterization of various insulation

Ultimate goal
- utilize digital analyzer to try to remotely detect damage
- computer characterization; take human out of loop