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Structural Health Monitoring
• SHM denotes a system with the ability to detect and interpret 

adverse “changes” in a structure in order to improve reliability 
and reduce life-cycle costs.  

• Greatest challenge in designing a SHM system is knowing 
what “changes” to look for, and how to identify them

• Reduces inspection and maintenance expenses and increases 
the reliability of damage detection and failure prediction
– currently 27% of aircraft life cycle cost is spent in inspections
– avoid tear-down of built up structures for required inspections
– much of the airline and military fleet are aging aircrafts, fatigue 

and corrosion become a problem
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Motivation and Research Goals
• Status quo of SHM research

– several projects investigating particular methods on ideal coupons
– investigators are often over-sold on their own detection method
– little presented on limitations of methods or pertinence to SHM

• Proposed research
– investigate potential sensing methods and combinations
– report on strengths and limitations of methods
– implementation potential for a real structure (conformability, size, etc.)
– show progression of detection reliability through building block

• Focus on composite materials — high pay-off area
– easy to adhere or embed, can tailor material to suit needs
– practical for new programs, can help to relax fears of “BVID”
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Experimental Approach

• AS4/3501-6 quasi-isotropic [90/?45/0]s laminates
• Introduced representative damage to composite specimens

– delamination — 2.5 cm cut w/utility knife, or teflon strip in middle
– transverse ply cracks — 4-pt fatigue on center of specimen 
– fiber fracture — 4-pt bend until audible damage 
– stress concentration — drilled hole through specimen
– impact — hammer struck against steel plate in center of sample

• Radiographs taken to verify damage

hole delamination

transverse 
ply cracks
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X-Ray Damage Verification

Control 
Specimen

Matrix Crack 
Specimen

Delamination
Specimen

Core Drilled 
Specimen

5 cm

25 cm
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Lamb Waves

• Form of elastic perturbation that propagates in a solid medium
• First described by Horace Lamb in 1917
• Described via dispersion curves

– plot group or phase velocity versus frequency thickness product
– function of elastic constants and density (often use Lamé’s constants)

• At a given frequency, two types of Lamb waves satisfy the wave 
equation – symmetric and anti-symmetric
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Damage Detection using 
Lamb Waves

• Use specimens from previous work, improve detection 
capability found using frequency response methods

• Damage can be identified in several ways
– group velocity determined by (E/? )1/2, cracks slow down waves
– reflected wave from damage can be used to determine locations

• Levels of damage detection in a structure
– identify presence of known damage in specimens
– differentiate between types of damage
– estimate damage location on specimen
– quantify extent of damage
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• Setup determined from conclusion of studies
– from material properties dispersion curves are calculated
– from group velocity dispersion curve, operating frequency selected
– from operating wavelength, actuator size is selected 

• PZT piezoceramic patches used for actuators and sensors 
• Excite Ao wave for long travel distances and to minimize clutter
• Driving signal of 3.5 sine waves under a Hanning window

– 15 kHz for narrow specimen
– 50 kHz for sandwich beams

Experimental Setup

Piezoceramic Actuator

Piezoceramic Sensors

Sent Signal
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Building Block Approach
• Coupon level laminate tests

– consistency amongst control specimens
– effects of various types of damages

• Narrow sandwich beam specimens
– effects of various types of cores
– delamination between laminate and core in different locations

• Complex structures
– micro-satellite tube with honeycomb core
– built-up structures with bonded ribs

• Future work with flat plate specimens
– actuating in center with sensors around edges
– “self-sensing” actuators in corners
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Thin Laminate Results: 
Time of Flight

• Time-trace of voltage signal from 
PZT sensor 20 cm from actuator 
driving at 15 kHz

• High degree of consistency 
between all control traces

• All damaged traces show a delay 
in time of arrival, and smaller 
amplitude responses

• Since these are short specimens, 
many reflections combine quickly

• While TOF is easily reproduced, 
difficult to measure accurately

Specimen labeled on plot
Superimposed control specimen



ASC01 - 9/12/01 12

Thin Laminate Results:
Wavelet Analysis

• Wavelet decomposition performed 
using Morlet signal, similar to FFT

• Compare received signal’s energy 
content at dominant frequency

• Control specimen clearly has the 
most energy transmitted

• Appears that as damage becomes 
more severe, more energy is lost

• Differences seem obvious enough 
for process to be automated

• Still not much information about 
damage type and location

Demonstrates ability to detect presence of damage and judge severity
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Narrow Sandwich Beams

High density aluminum 
honeycomb (HD Al)

Low density aluminum 
honeycomb (LD Al)

Nomex core

Rohacell core

25 cm
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Sandwich Beam Results

• Time-trace of voltage signal from 
PZT sensor 20 cm from actuator 
driving at 50 kHz

• Stiffer panel requires higher 
driving frequency for clear results

• Core causes damping in the 
signal, softer core? smaller signal

• Again, good consistency between 
all control traces

• Very small signal in all damaged 
cases, difficult to compare with 
undamaged specimen

Control specimen
Debonded specimen
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Blind-Test Beam Results

• Wavelet coefficient plot for beam 
“blind test” compares energy 
content for 50 kHz

• Three “control” specimens with 
high density Al core, one has an 
unknown delamination

• Controls compared to a specimen 
with a known delamination

• Top two clearly have more energy 
present, and are the controls

• Bottom two with little energy 
present are debonded specimen

Indicates viability of wavelet method for use in at least simple structures
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Composite Micro-Satellite

0.4 m

1 m

2.5 cm2 impact region
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• CFRP tube, 4-plies surrounding 
low-density anticlastic Al core

• Test two apparently undamaged 
areas and compare to known 
impact damage region

• Wavelet coefficient plot compares 
energy content for 40 kHz

• Determine axial  and 
circumferential signal transmission 
limitations

Lamb waves are capable of traveling at least 0.5 m in sandwich structure

Satellite Control Region 1
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Satellite Control Region 2

Demonstrates consistency of control signal sent in complex structure

• Demonstrates reproducible level 
of energy in Lamb wave signature 
for two undamaged areas

• Axial signal transmission limitation 
appears to be about 0.5 m

• Circumferential transmission limit 
of 0.2 m; curvature causes more 
dispersion in signal (not shown)

• Lamb waves could potentially 
travel even further in a large 
structure without damping core
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Satellite Damaged Region

Small impact damage near actuator deflects much of the sent energy

• Known impact damage region in 
tube of 2.5 cm diameter (damage 
visible on surface of outer ply)

• Energy content in first 10 cm is 
greatly reduced

• Signal is practically lost due to 
dispersion after 20 cm

• Can readily confirm presence of 
damage, however axial damage 
location information not present 
with current setup
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Stiffened Composite Plates

Bonded 2.5 cm aluminum C-channel Bonded composite 2.5 & 5 cm strips
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Bonded Stiffener Results

• Quasi-isotropic laminated plates 
with thick Gr/Ep strips bonded in 
center of laminates

• One plate with teflon strip inserted 
between adhesive and stiffener

• Observe transmitted wavelet 
energy passing through stiffener
– measurement taken in center
– measurement taken on side (S)

• Delaminated region slows wave
• Similar results observed with 

metallic c-channel stiffener

Lamb wave method viable for detecting delamination in built-up structure
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Preliminary Lamb Wave 
Conclusions

• Method shows great detection sensitivity to damage
– has demonstrated presence and severity of damage capabilities
– potential for damage location with self-sensing actuators

• Method must be tailored for particular material and application
– combination of models and tests to determine driving frequency
– patch size and location depends upon material, thickness, curvature

• Several limitations exist
– active power requirement
– complex results caused by need for high sensitivity
– results are localized to straight path and max traveling distances

• Possible strategy for implementation in SHM system
– also light, conformal, but requires small voltage for actuating
– could use same sensors as FRM and AE to produce Lamb waves
– groups of sensors to be placed in areas of concern for triangulation
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Future Work

• Finite element representations of all tests

• Combined testing using several co-located methods
– Lamb wave
– frequency response
– acoustic emission
– strain based

• Refine analysis procedures for reliable automated 
detection of presence of damage

• 2-D testing of plate sections


