Service Life Assessment Methodology for Composites (SLAM-C)

Seth S. Kessler, Ph.D. & Hugh L. McManus, Ph.D.
Metis Design Corporation

Michael W. Hyer, Ph.D.
Virginia Tech

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com
Opportunity

- Composite materials are being used increasing in construction
 - used for primary structure, repairs and reinforcements
 - increased specific strength and stiffness; reduced part count and weight

- Durability of composites not well understood or considered
 - more formulations than metals with many fewer data points in existence
 - complex and interacting damage modes complicate further problem

- Need exists to develop software to predict composite durability
 - many viable analytical models presently exist in the literature
 - formal framework must be put in place to standardize evaluation
 - ideally as few tests as possible would be performed for efficiency
 - ASTM tests should be used wherever possible
SLAM-C Architecture

- **Service Life Assessment Methodology for Composites**
 - durability standards and procedures integrated with models
 - implementation tool with simple software interface, service life output

- **Top level menu**
 - select category of structure (bridge, building, etc.)
 - select sub-category of structure (standard, near ocean, desert, artic, etc.)
 - these selections define durability modules, unit loads and survival criteria

- **Data entry forms**
 - physical properties: chopped/uni/woven, # plies, layup, thickness
 - mechanical properties: as tested stiffness ($E_{1,2}$, G) and strength ($\sigma_{1,2}$, τ)
 - durability properties: tested constants for thermal, moisture, UV & creep

- **Final report**
 - certified service life given based on category/sub-category criteria
 - graphical display of performance (strength/stiffness) vs service life
SLAM-C Methodology

• Software would be maintained by certified testing houses
 - criteria for each category determined by Army and building codes
 - further durability modules could be added in software revisions
 - companies would approach certified test house with proposed laminates

• Testing performed by the test house to populate the software
 - company indicates category and sub-category they intend to develop
 - software output would request the appropriate specimens for testing
 - could be machined by the company or test house or a 3rd party
 - as-tested results can be archived in library for future certifications

• Printable “Service Life Certificate” endorsed, sent to company
 - certifies the service life of the given material in the desired environment
 - perform in parallel to compare the performance in multiple applications
Top Level GUI

- Specifies structural category and operating environment
- Logic indicates loading & failure criteria, determines models

ASC 2007
Physical Property GUI

- Enter laminate type, layup, ply thickness for reverse CLPT
- Can archive material to be used for future certification
ASTM Testing GUI

SERVICE LIFE ASSESSMENT METHODS FOR COMPOSITES
SLAM-C

<table>
<thead>
<tr>
<th>DEMO</th>
<th>DEMO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1-Structure</th>
<th>2- Laminate Design</th>
<th>3- ASTM Tests</th>
<th>4- As Tested Properties</th>
<th>5- Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>UPLOAD</td>
<td>PRINT</td>
<td>LINK</td>
<td>Quantity</td>
</tr>
<tr>
<td>ASTM D3518</td>
<td>3</td>
<td>0/90</td>
<td>25x250mm</td>
<td>62.50</td>
</tr>
<tr>
<td>ASTM D3879</td>
<td>3</td>
<td>+/-45</td>
<td>25x250mm</td>
<td>62.50</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>3</td>
<td>0/90</td>
<td>12.5x50mm</td>
<td>62.5</td>
</tr>
<tr>
<td>ASTM D3518</td>
<td>3</td>
<td>+/-45</td>
<td>17.5x50mm</td>
<td>62.5</td>
</tr>
<tr>
<td>ASTM D3879</td>
<td>3</td>
<td>0/90</td>
<td>25x250mm</td>
<td>62.50</td>
</tr>
<tr>
<td>ASTM D3518</td>
<td>3</td>
<td>+/-45</td>
<td>25x250mm</td>
<td>62.50</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>3</td>
<td>0/90</td>
<td>12.5x50mm</td>
<td>62.5</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>3</td>
<td>+/-45</td>
<td>17.5x50mm</td>
<td>62.5</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>3</td>
<td>0/90</td>
<td>12.5x50mm</td>
<td>62.5</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>3</td>
<td>+/-45</td>
<td>12.5x50mm</td>
<td>62.5</td>
</tr>
</tbody>
</table>

Key Points

- Provides link to testing standard, generates test matrix
- Upload results directly into software for data reduction (future)
As-Tested Property GUI

- Mechanical and durability properties and constants displayed
- Can archive laminate results to be used for future certification
• Residual properties plotted with failure criteria; “Service Life”
• Export to standard certification form to be printed/endorsed
Modeling

• Only 2 representative environments investigated due to time constraints for accelerated testing

• Moisture (warm/wet ~ jungle)
 - assumes Fickian diffusion
 - swelling in laminate causes degradation
 - Chamis, Crews, Foch & McManus

• Elevated temperature (hot/dry ~ desert)
 - diffusion problem as well
 - Arhennius-type reaction laws
 - Chamis, Crews, Cunningham & McManus
Experimental Validation

- E-glass/VinylEster [0/90/90/0] laminate, VARTM RT cured

- Hot/Dry temperature was selected by TGA mass loss study
 - at 150°C the mass loss was small during a 24 hours period, no charring
 - at higher temperatures, charring was evident around the edges

- Warm/wet temperature selected to be 60°C at 100% RH to guarantee degradation within the remaining test time
Experimental Setup

- Tensile specimens were 25mm wide by 250mm long
 - 0/90 tensile specimens were consistent with ASTM Standard D 3039
 - ±45 tensile specimens were consistent with ASTM Standard D 3518
- Short beam shear specimens were 12.5mm wide by 50mm long
 - 0/90 and ±45 both consistent with ASTM Standard D 2344
 - Span/thickness = 5, and cross-head speed = 1 mm/min
Software Validation

- Short beam shear (SBS) test results used to calibrate models
 - solid lines represent model output for phenomenon (same as software)
 - redundant data points collected from tensile tests for validation

- Good agreement between predictions and data for both cases
 - hot/dry showed modest strength increase due to post-cure effect
 - warm/wet exhibited significant loss in strength, slower stiffness reduction
Service Life Prediction Example

• Simple to adjust time scale of static/cyclic loading
 ➢ significant degradation over time due to thermo-oxidative degradation
 ➢ service life of ~1 year predicted w/80% strength failure criteria

• Calibrated model can used to predict variations of conditions
 ➢ 40C and 60% humidity simulated (realistic harsh terrestrial conditions)
 ➢ service life <1 year predicted w/80% strength failure criteria
Conclusions

• SLAM-C methodology is simple way to standardize certification of service life for composite laminates exposed to environment
 - modular software architecture allows for seamless integration of new models and/or update of existing phenomenological models
 - short beam shear (SBS) tests sufficient to characterize the macroscopic behavior of laminates; much simpler and cheaper than traditional tests

• Software guides user through service life certification process
 - forced to use “as tested” data, result files directly uploaded to models
 - particular laminates can be archived in the system for future use
 - output presents a certified service life based on the coded failure criteria

• Good agreement between models and experimental results
 - for both cases examined software prediction matched tensile results
 - TGA results for time-to-char matched model for all temperatures
Acknowledgments

• This research was sponsored by the Army Corps of Engineers Composite Engineering Research Laboratory (CERL)
 ➢ SBIR Phase I award W9132T-06-C-0026
 ➢ “Software Tool for Composite Durability Prediction”

• Army program managers:
 ➢ Dr. Larry Stephenson
 ➢ Dr. Ashok Kumar