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SHM Motivations

• Structural Health Monitoring (SHM) denotes a system with the ability 
to detect and interpret adverse “changes” in a structure in order to 
improve reliability and reduce life-cycle costs

• Inspection and maintenance expenses could be reduced by SHM
– currently, about 25% of aircraft life cycle cost is spent in inspections
– commercial airlines spend a combined $10 billion/year on maintenance
– condition based maintenance could reduces these costs by 33%

• Reliability of damage detection and failure prediction increased
– much of the airline and military fleet are ageing aircrafts, fatigue issues
– can catch damage that may have occurred between scheduled intervals
– most inspection is currently visible, forms of damage can be overlooked



EWSHM02 7/10/02 3

Lamb Wave Methods
• Form of elastic perturbation that propagates in a solid medium

– function of elastic constants and density (often use Lamé’s constants)
– two waves satisfy equation at ? – symmetric and anti-symmetric

• Background work from literature
– Described by Horace Lamb (1917), developed by GE for NDE in 1960
– most significant work published by Cawley (2000), detecting damage 

using interdigitated Lamb wave sensors in complex metallic structures
– Soutis (2000) demonstrated relationship between delamination area 

and time of flight shifts using piezo sensors in a composite laminate

• Present work uses piezo sensors in pulse-transmission mode to 
detect energy present at driving frequency, some self-sensing work
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Damage Detection using 
Lamb Waves

• Dispersion curves are the best way to describe Lamb waves
– phase or group velocity versus frequency thickness product
– can use to select actuating frequency and predict attenuation behavior

• Damage can be identified in several ways
– group velocity approximately ? (E/? )1/2, damage slows down waves
– reflected wave from damage can be used to determine locations
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Frequency Selection

• Collect material properties and representative geometry
• From E, ? , ? , t plot phase velocity and group velocity curves (use 

corrections to derivations from literature of group velocity calcs)
• Want to choose dcg/dw=0 (nearly constant group velocity)

– for Ao mode phase velocity travels as w½ and begins cg=2cp and 
tends to Rayleigh velocity, so cg=cr is the optimal value

– Often A1 will occur at a frequency below cg, so choose highest value 
within 10% of A1

• Must also take into account actuator and data acquisition 
capabilities in choosing highest frequency

• Lastly, structural natural frequencies play a small role in 
sinusoidally amplifying the signal, from FEM can choose 
particular operating frequency to coincide with normal mode
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Pulse Shape Selection

• Signal shape
– sinusoidal waves works much better than anything else
– Hanning window helps to minimize spillover frequencies
– induced strain on PZT resulting from waves is at a magnitude of 

about 1/250 of actuating voltage

• Number of periods
– probably most complicated decision in specifying system
– more pulses yield a narrower bandwidth of frequencies actuated
– too many pulses can cover damage signal if close to sensor
– since specimens for this experiment were short, 3.5 cycles used
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Actuator Dimensions

• Actuator Length (2a)
– once operating frequency is selected and phase velocity is 

calculated the optimal actuator lengths can be specified
– amplitude sinusoidally amplified with maximum at 2a=? (n+1/2) 

where ? is the wavelength and n=0,1,2,3…

• Large actuator width yields more uniform wavefront
– can design as a minimum from the above equation to suppress 

propagation in off-axis direction
– for circular actuators, diameter=2a
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Lamb Wave Limitations

• Dispersion is the change in slope of the phase velocity curve
– curved sections experience higher dispersion, especially at lower 

frequencies
– anisotropy typically yields more dispersion
– discontinuities and damage causes increased dispersion as well

• Attenuation is the loss factor in displacement amplitude in 
the propagating wave
– generally follows A=1/KL
– thicker specimens tend to Rayleigh value of 1/(KL)½

– higher dispersion causes increased attenuation
– fluids have a significant effect on the attenuation of S modes, but an 

insignificant effect of the A modes



EWSHM02 7/10/02 9

Wavelet Analysis

• Wavelet decomposition performed 
using Morlet signal
– select mother wavelet
– scale and shift using basis

• Found in 1910, complex 
algorithms not until 1988

• Compare received signal’s energy 
content at dominant frequency

• More efficient than FFT because 
closer signal shape

• In practice use discrete wavelet  
decomposition in software, since 
often there is no closed form 
solution for continuous equality
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• Actuation parameters determined from governing equations
– from material properties dispersion curves are calculated
– from group velocity dispersion curve, operating frequency selected
– from operating wavelength, actuator size is selected
– number of pulses to be sent determined by distance between features

• Excite Ao wave for long travel distances and to minimize clutter

• Experimental procedure for present work used these equations
– frequencies between 15-50 kHz 
– utilizes 3.5 sine waves under a Hanning window

Parameter Optimization

Piezoceramic Actuator

Piezoceramic Sensors

Sent Signal
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Representative Damaged Coupons

• AS4/3501-6 quasi-isotropic [90/?45/0]s laminates
• Introduced representative damage to composite specimens

– delamination — 2.5 cm cut w/utility knife, or Teflon strip in middle
– transverse ply cracks — 4-pt fatigue on center of specimen 
– fiber fracture — 4-pt bend until audible damage 
– stress concentration — drilled hole through specimen
– impact — hammer struck against steel plate in center of sample

• Radiographs taken to verify damage

hole delamination

transverse 
ply cracks
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X-Ray Damage Verification

Control 
Specimen

Matrix Crack 
Specimen

Delamination
Specimen

Core Drilled 
Specimen

5 cm

25 cm
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Thin Laminate Results

• Wavelet plots from PZT sensor 20 
cm from actuator driving at 15 kHz

• Control specimen clearly has the 
most energy transmitted

• Appears that as damage becomes 
more severe, more energy is lost

• Differences seem obvious enough 
for process to be automated

• High degree of consistency 
between all control traces

• All damaged traces show a delay 
in time of arrival

Demonstrates ability to detect presence of damage and judge extent
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Building Block Approach
• Narrow coupon laminates

– same specimen used for FRM
– several types of damage

• Narrow sandwich beams
– various types of cores tested
– disbonds between laminate and core

• Stiffened plate
– various types of bonded ribs
– disbonds between laminate and rib

• Composite sandwich cylinder
– 0.4m diameter cylinder with core
– low velocity impacted region

1 m 2 cm

25 cm

25 cm
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Damage Detection Results
• Wavelet coefficient plot for beam “blind 

test” compares energy content for 50 kHz
• Three “control” specimens with Al core, 

one has an unknown delamination
• Compared to a damaged specimen
• Top two clearly have more energy
• Bottom two with little energy present are 

debonded specimens

• Two composite plates with stiffening ribs 
compared, one with disbond

• Disbond yields fringe pattern in both 
reflected and transmitted wave

Indicates viability of wavelet method for use in at least simple structures
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Lamb Wave Method 
Conclusions

• Strengths
– shows great sensitivity to local presence of many types of damage
– potential for damage location calculation with self-sensing actuators

• Limitations
– method must be tailored for particular material and application
– patch size and location depends upon material, thickness, curvature
– high power requirement compared to other methods
– complex results by comparison to other methods
– results are localized to straight paths and max traveling distances

• SHM implementation potential
– could use same sensors as FRM to produce Lamb waves
– can integrate and compare transmitted and reflected energy
– groups of sensors to be placed in areas of concern for triangulation
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Proposed SHM Architecture
• Several piezoceramic sensors and other system components on 

a generic 0.5x0.5 – 1x1 m patch with a thermoplastic backing
– strain, vibration, acoustic emission, Lamb waves
– some on chip processing
– wireless relay from patch
– to be placed in key locations

• Neural network behavior (ant colony scenario)
– system to be calibrated pre-operation to understand orientations
– several “dumb” sensors collectively making “smart” decisions
– sensors behave passively with AE and strain, occasional FRM
– when event occurs, will actively send Lamb waves to quarry 

damage, determine type, severity and triangulate location
– upon verification of damage convey to central processor

• Could gather information through ethernet port upon landing, run 
full vehicle test pre-flight as a preliminary insertion step
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Future Recommended Research
• Similar studies for other potential detection methods 

– acoustic emission
– eddy current

• Similar studies for other SHM components
– wireless communication systems
– data acquisition and processing 
– powering devices

• Increase complexity of tests
– test on built up fuselage section or helicopter blade
– test in service environment, noise and vibrations 
– use multiple sensing methods at once
– integrate multiple SHM components
– use MEMS components


