

Direct-Write Technology for a Cable-free Digital Sensor-Bus

Seth Kessler, Christopher Dunn, Michael Borgen, Ajay Raghavan Metis Design Corporation

> Jeffrey Duce, David Banks Boeing Research & Development

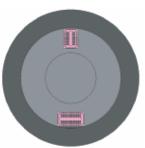
Motivation for Research

- SHM improves reliability, safety & readiness @ reduced costs
 - > adds weight, consumes power & computational bandwidth
 - > traditional cables susceptible to EMI, durability & signal attenuation
 - > scaling SHM for large-area coverage has presented challenges
- Local sensor digitization (US patent 7,373,260 & other pend.)
 - convert analog signals into digital data at point-of-measurement (POM)
 - > eliminates EMI & attenuation issues
 - > enables serial sensor connections to minimize total cable length
 - digital sensor-bus alone not sufficient, cable harness durability concerns
 - wireless transmission infeasible, power requirements & regulatory issues

Direct-Write (DW) Technology

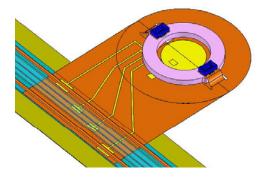
- Simple basic principal behind all DW methods
 - > fine electrically conductive & insulative traces selectively deposited
 - > directly onto structure or onto an intermediary substrate
 - > conformal traces create a multifunctional structural component
 - > CAT-6 equivalent weighs < 25 g per meter of length
- There are multiple DW methods commercially available
 - Plasma Flame Spray (PFS) of copper & ceramic (Mesoscribe)
 - ➤ Jetted Atomized Deposition (JAD) of silver nano-ink & epoxy (Optomec)
- Extensively tested by Boeing
 - > shown DW traces to be extremely resilient to mechanical loading
 - > designed impermeable to environmental factors with an encapsulant
 - > demonstrated in a large scale production environment, FAA approved

Benchmark System

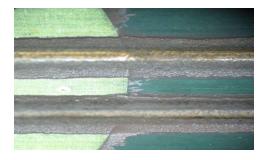

- Present research explored the patent pending concept of a "cable-free" digital sensor-bus for SHM using DW
- Selected hypothetical SHM system for design process
 - > 100 digital sensor nodes
 - distributed over 100 m total length (straight line or meandering over grid)
 - > sensors spaced by 0.5 m along bus
 - > based on requirements derived from Ares V composite interstage
- Design process developed & executed
 - appropriate DW methods selected
 - > conductive & insulative trace & layer dimensions were iteratively chosen
 - > configuration to achieve desired transmission characteristics identified
 - proof-of-concept validation experiment conducted

Physical Connectivity

- SHM nodes considered
 - Intelli-Connector™ digital SHM node selected for POM digitization

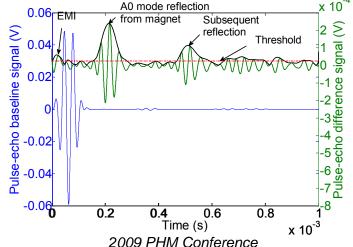


- Hardware Compatibility
 - \triangleright communication: differential controller area network (CAN), requires 2 parallel conductors (high & low) w/impedance 100-130 Ω
 - > synchronization: high-speed RS-422 digital differential sync protocol, requires 2 parallel conductors (high & low) w/impedance 100-130 Ω
 - > power: 108 mA max current draw, standby current draw of 30 mA; 3.5 A benchmark assumes 1 exciting node & 6 sensing nodes at a time @ 28V
 - shielding: parallel shield traces should separate CAN & sync traces, top/bottom layers couples untwisted pairs & protects against EMI


Conductor Break-Out Methods

- Connectors installed over DW traces
 - > creating 3-D via's are very difficult
 - > traces are very close together

- Bonding flex directly over DW traces
 - > alignment complexities
 - delamination conerns at "step" from traces


- Deposit DW traces over flexible circuit stub ("flex-tail")
 - > flex-circuit already conceived for HS node power/comm connection
 - > bonded to structure during DW integration, selectively exposed copper
 - durable & reliable solution with minimum mass impact
 - > experimentally validated & debugged process
 - > can also add connector to flex-tail for compatibility with other sensors

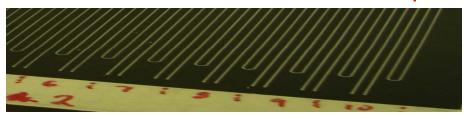
SHM Method Compatibility

- Investigate effect of DW traces on wave propagation for SHM
 - concerns for GW scatter points, can change phase & amplitude
 - > experiment conducted to observe interaction of GW w/DW traces
- CFRP plates measuring 75 x 75 x 0.25 cm thick tested
 - > instrumented w/3 PZT sensor pairs bonded opposite to pair of DW traces
 - > catch signals indicated some attenuation but no significant phase change
 - > echo signals found a small but detectible reflection from DW traces
 - > overall DW did not effect detection, locating or range (40 cm here)

Electrical Compatibility

- Physically connecting hardware to DW sensor-bus not sufficient
 - > communication & sync traces must match prescribed impedance
 - > power lines must carry required current over desired total length
 - > shield layers need to be sized to provide the desired protection
- Node # & bus length dictated by materials, geometry & spacing
 - > collect toolset of equations to be used for design optimization
 - > measure the electrical properties of common DW materials
 - resistance function of material conductivity & trace area
 - > impedance function of insulator dielectric, trace geometry & spacing
- Applicable standards
 - ➤ MIL-STD-275E & IPC-2221: generic standards on printed board design
 - ➤ MIL-STD-461F: requirements EMI characteristics of equipment
 - ➤ MIL-STD-810E: environmental conditions for airborne equipment

Communication & Sync Traces



- Spice simulation model built to optimize CAN configuration
 - > theoretical values for good conductors used
 - > true values for CAN controller elements of SHM nodes used
 - > input of high/low CAN pulse pair, differential voltage output for final node
- For digital communication key parameter is impedance
 - > very complex function, generally need small traces close together
 - > function of conductor trace width, spacing, thickness & conductivity
 - > function of in-plane shield trace & out-of-plane shield layer spacing
 - > function of insulator dielectric constant between conductors and shields
- Traces determined to be 0.25 mm x 10 µm thick w/0.5 mm pitch
 - > much finer than PFS is capable of depositing
 - > only JAD considered for CAN & sync traces (same impedance required)

JAD Experimental Characterization design

- Experimental procedure conducted to characterize JAD
 - measure conductivity of silver nano-ink traces
 - verify tolerances & manufacturing capabilities of method
- JAD was capable of achieving required geometry
 - \triangleright resistance 10³ x expected/desired values (1 k Ω /m compared to 1 Ω /m)
 - > thickness was issue, assume better capabilities in near future
- Screen-printing process developed for present research
 - > silver epoxy spread over chemical-etched steel shim templates
 - much thicker silver traces can be patterned than current JAD
 - > finer pitch traces possible than PFS (no overspray)
 - > updated traces determined to be 0.33 mm x 125 µm thick w/1.5 mm pitch

Power Traces

- Power trace design dominated by 3 factors
 - maximum voltage carrying capabilities (needs to be at least 28 V)
 - maximum current carrying capabilities (needs to be at least 3.5 A)
 - material resistivity
- Material resistivity dictates how many total nodes can be connected to the bus over what total length
- Only PFS could meet constraints
 - ➤ large area traces
 - high conductivity

PFS Trace Voltage & Current Limits esign

Minimum trace spacing

- \triangleright 0.1 mm for 0 to 50 V_{DC} or V_{AC}
- > Type A5 assemblies w/external conductors & conformal coating
- > Table I in 4A in MIL-STD-275E and Table 6-1 in the IPC-2221 standard

Minimum conductor cross sectional area

- > 0.16 mm² for 3.5 A with a 2x factor of safety
- > for external etched copper conductors
- > Figure 4A in MIL-STD-275E and Figure 6-4 in the IPC-2221 standard

Assumptions

- > 100 nodes connected to the power trace, 1 exciting & 6 sensing at a time
- ➤ nodes are spaced ½ m (~1.5 feet)
- > power dissipated in the nodes is constant regardless of voltage
- > traces have a conductivity equal to 58 x 10⁶ S / m (IACS at 20°C)

PFS Trace Total Node/Length Limit meis design

- Power trace resistance limits total # nodes and/or bus length
 - > system treated as large circuit diagram solved by Kirchhoff's laws
 - > 93 nodes consuming 0.8W in standby & 7 nodes consuming 3W sensing
 - > each trace between nodes modeled as small resister
 - > assume trace conductivity equal to 58x10⁶ S/m (IACS at 20°C)
 - > equations dictated minimum cross-sectional area of ~1 mm²

Trace area	0.58 mm ²	0.77 mm ²	1.16 mm ²
	(1.5 x 0.3 mm)	(1.5 x 0.5 mm)	(3.0 x 0.5 mm)
Resistance per length	30.0 mΩ / m	22.2 mΩ / m	14.8 mΩ / m
Bus input voltage	28 V _{DC}	28 V _{DC}	28 V _{DC}
Last node voltage (needs 24 V _{DC})	20.3 V _{DC}	22.8 V _{DC}	24.8 V _{DC}
Bus input current	4.2 A _{DC}	3.9 A _{DC}	3.7 A _{DC}
Bus input power	118 W	110 W	104 W
% power dissipated in traces	20 %	13 %	8 %

PFS Experimental Characterization meis design

Voltage & current limits

- > 0.1, 0.2 & 0.3 mm² traces deposited w/total length of ~5 m (2.5 mm pitch)
- > 40 V_{DC} power supply connected to each pair of traces, current measured
- ➤ all traces successfully carried 9.5 A_{DC} for 5+ minutes without failure

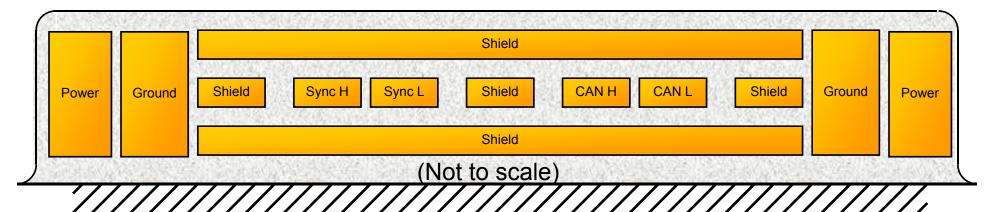
Conductivity measurements

- \triangleright electrical conductivity related to trace resistance by R=L / (σ *A)
- > 8x10⁶ S/m for 0.1 mm², 13x10⁶ S/m for 0.2 mm², 17x10⁶ S/m for 0.3 mm²
- > low compared to standard due to impurities & geometry assumptions

Consequence of lower conductivity

- > fewer nodes can exist on bus as designed
- > nodes need to be spaced closer together
- > otherwise traces will need to be re-sized

Shield Traces



- Shield layers serve to protect CAN & sync from EMI
 - > 1 µm is an excellent shield against electric interference up to 1 MHz
 - > 10 µm is a mild shield against magnetic interference up to 1 MHz
- Shield layer plays an important role in impedance calculation
 - > if placed far enough away from traces they have little influence
 - > in-plane shield traces can be neglected if pitch is same as conductors
 - > out-of-plane shield cannot be neglected within reasonable geometry
 - > out-of-plane shield designed to be 0.5 mm above and below conductors
 - > remaining volumes between conductors & shields filled with dielectric

Overall Configuration

- Great challenge was system integration
 - maintain optimized characteristics of all elements
 - > minimize overall bus geometry & mass to maintain benefits of DW
 - > consider fabrication processes so that configuration could be made
- Evident neither PFS or JAD able to be exclusively used bus
 - > PFS thick enough for power but too poor tolerances for communication
 - > JAD accurate enough for controlled impedance but too thin for power
 - hybrid approach is necessary to achieve desired functionality

Conductor Trace Dimensions

Communication & Synchronization

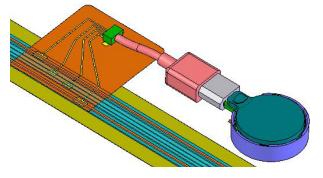
- > CAN (+/-) and sync (+/-) traces 330 μm x 125 μm thick with 1.5 mm pitch
- > size dictated by impedance requirements

Power & Ground

- > 2 pairs of 1.25 mm x 1 mm thick with 12 mm effective pitch for 1 mm²
- > size dictated by voltage drop per length

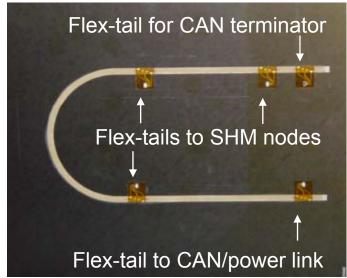
Shield

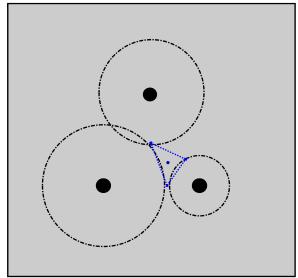
- > top & bottom shield layers 10 μm thick surround traces with 1 mm pitch
- > size dictated by skin depth


Overall dimensions

- > 1.35 cm x 1.25 mm thick
- > 25 g per meter, total of 2.5 kg for benchmark system (1.5 kg for sensors)

Initial Implementation


- Initial demo required deviation from eventual production design
- Physical Connectivity
 - ➤ Intelli-Connector™ connects to power & CAN through FireWire plug
 - > flex-tail adapter designed to make connection for demonstration
 - ➤ Intelli-Connector™ HS sensors are directly compatible w/flex-tail design
- Electrical Compatibility
 - > overall configuration minimized to demonstrate function at reduced risk
 - > since CAN & sync traces require identical impedance, only CAN written
 - > since 3 nodes will be used over 1 m, only 1 power pair written (0.5 mm²)
- Silk-screen process used instead of thin JAD traces



Proof-of-Concept Demonstration

- Digital sensor-bus installed on 75 x 75 x 0.25 cm CFRP plate
 - > 3 Intelli-Connector™ SHM nodes bonded in isosceles triangle formation
 - front-end connected to CAN/USB plug, aft-end to termination resistor
- Magnet to simulate damage (12.7 mm diameter x 6 mm tall)
 - > no communication or power problems were encountered
 - > across 10 trials without magnet no false positives reported
 - > across 10 trials with magnet average error in prediction was 7.5 mm

Acknowledgments

BUSINESS TECHNOLOGY TRANSFER

metis design

- This research was sponsored by NASA Ames Research Center
 - ➤ SBIR Phase I award NNX09CC57P
 - > "Cable-Free Sensor-Bus for SHM of Large-Area Composites"
 - > program manager: Edward Martinez
 - > contributions from: Carissa Tudryn, George Studor & Jim Miller
- The Boeing Company
 - > joint development of original concept & supporting fabrication
 - > contributions from: Jeffrey Duce, Dr. David Banks & Dr. Jeong-Beom Ihn
 - > fabrication support from: Ryan Wilhelm & Scott Johnston
- Metis Design Corporation
 - > Dr. Christopher Dunn, Michael Borgen & Dr. Ajay Raghavan
 - > original SHM hardware funded by AFRL/VA award FA9550-05-C-0024
 - > new HS SHM hardware fundeded by AFRL/VA award FA8650-08-C-3860