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SHM Motivations

• Structural Health Monitoring (SHM) denotes a system with the ability 
to detect and interpret adverse “changes” in a structure in order to 
improve reliability and reduce life-cycle costs

• Inspection and maintenance expenses could be reduced by SHM
– currently, about 25% of aircraft life cycle cost is spent in inspections
– commercial airlines spend a combined $10 billion/year on maintenance
– condition based maintenance could reduces these costs by 33%

• Reliability of damage detection and failure prediction increased
– much of the airline and military fleet are ageing aircrafts, fatigue issues
– can catch damage that may have occurred between scheduled intervals
– most inspection is currently visible, forms of damage can be overlooked
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Airline Inspection Practice
• Current requirements from FAA

– “walk-around” pre-flight for obvious visual damage
– detailed visual inspection of most components every 150 flights
– tear-down of critical metallic components every 6,000-12,000 flight 

hours, ultrasonic or eddy-current inspection
– composite parts designed to survive with any invisible damage, 

visually inspect for no growth over two scheduled intervals

NTSB report on American Airlines Flight #587

• Example: Airbus A300/310
– composite vertical stabilizer
– no specific inspection requirement
– Airworthiness Directive (FAA-AD) 

immediate visual inspection for 
“delamination, cracks, splitting, 
moisture damage or frayed fibers”
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SHM System Components
• Architecture:

– integration of system components for efficiency, redundancy and reliability
– real-time VS discontinuous monitoring

• Damage characterization:
– identification of damage types for target application 
– quantification of damage signature and effect on structural integrity

• Sensors:  
– strain, vibration, acoustic emission, impedance, magnetic field, etc.
– active VS passive sampling methods

• Communication:
– both between neighboring sensor cells and global network
– wired VS wireless

• Computation:
– locally control sensing systems and acquire data 
– process and combine local and global data

• Algorithms:  interpretation of damage location, severity, likelihood of failure

• Power:  supply electricity to each component

• Intervention:  actively mitigate damage, repair damage

Rockwell RF receiver

Honeywell MEMS sensor
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Goals for SHM 
• Minimize life-cycle costs

– eliminate scheduled inspections
– improve efficiency and accuracy of maintenance
– reduce operational down-time, thereby capturing more revenue
– increase fuel efficiency and range by reducing structural weight

• Improve failure prevention
– retrofit SHM systems into existing vehicles to monitor damage growth
– integrate SHM networks into new vehicle designs to guide inspections 

and dictate maintenance and repair based upon need
– intelligent structures are a key technology for quick turnaround of RLV’s

• Greatest challenge in designing a SHM system is knowing what 
“changes” to look for, and how to identify them
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SHM in Composites

• Most new vehicles include advanced composite materials in 
structural components due to their high specific strength and 
stiffness

• Different areas of concern for NDE
– metals: corrosion and fatigue
– composites: delamination and impact damage
– damage below the visible surface is most important for composites

• Composite generally allows a more flexible SHM system
– ability to embed to protect sensors or actuators 
– can tailor structure with SMA or E&M conductive materials
– higher likelihood of sensors initiating damage however

• May help relax peoples’ fear of commercially using composites if
they are continuously monitored
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Procedure Outline
• Reviewed candidate damage detection methods in literature

– most investigators focus on a single particular method
– ideal specimens are used, non-representative geometry and damage
– little presented on limitations of methods or pertinence to SHM

• Architectural considerations
– focus on composite materials as a high pay-off area
– examine effects several damage types and geometric complexities
– investigate combinations of sensing methods using same sensors
– report on strengths, limitations, and SHM implementation potential

• Experimental approach
– generic specimens manufactured and tested by various methods
– piezoelectric sensors selected for versatility and simplicity
– thermoplastic tape used to attach sensors for re-usability

• Analytical approach
– optimize testing procedures with governing equations
– build finite element models to predict response, judge sensitivity
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Representative Damaged Coupons

• AS4/3501-6 quasi-isotropic [90/?45/0]s laminates
• Introduced representative damage to composite specimens

– delamination — 2.5 cm cut w/utility knife, or Teflon strip in middle
– transverse ply cracks — 4-pt fatigue on center of specimen 
– fiber fracture — 4-pt bend until audible damage 
– stress concentration — drilled hole through specimen
– impact — hammer struck against steel plate in center of sample

• Radiographs taken to verify damage

hole delamination

transverse 
ply cracks
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X-Ray Damage Verification

Control 
Specimen

Matrix Crack 
Specimen

Delamination
Specimen

Core Drilled 
Specimen

5 cm

25 cm
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Finite Element Models

• Modeled and processed in ABAQUS?
– 25x5cm quasi-isotropic laminate
– 2000 - 5mm square 9-noded shell elements
– Clamped-free boundary conditions
– 0-20 kHz dynamic excitation for modal analysis method
– loading by a nodal coupled moment for Lamb wave method

• Several models representing various damage types
– delamination — 2 layers of half laminate elements in damage region
– fatigue cracks — 20% reduction in E of region (Tong et al., 1997)
– fiber fracture — 10% reduction in E of region (Whitney, 1999)
– hole — physically modeled holes in appropriate location
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Frequency Response Methods
• Simple to implement on any geometry, global in nature

• Can be applied actively or passively
– active method uses transfer function between two actuator/sensors

– can passively monitor response to ambient or operational vibrations

• Natural bending frequencies for beams: 
– stiffness reduction decreases ?
– density/mass reduction increases ?

• Mode shapes are altered by damage locations
• Response amplitude increases with more damage

• Present work monitors specimen response using transfer function 
method, measuring piezo impedance due to “sine-chirp” actuation
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Averaged Velocity Response
Low Frequency Range

Clearly identifiable shift in frequencies due to delamination

Experimental Results Finite Element Results
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Frequency Response Method 
Conclusions

• Strengths
– method shows useful detection sensitivity to global damage
– testing can be passive, variety of light and conformal sensors work

• Limitations
– small changes in characteristics at low frequencies
– modes combine and new local modes appear at high frequencies
– altering one variable linearly is not practical for real applications
– model-based analysis is impractical
– little information on damage type or location (6cm hole ? 5cm delam)

• SHM implementation potential
– first line of defense for detecting global changes caused by damage; 

use active sensing methods for more detail
– last line of defense for widespread fatigue damage on global modes; 

can set limit on modal resonance change from healthy state
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Lamb Wave Methods
• Form of elastic perturbation that propagates in a solid medium

– actuation parameters determined from governing equations
– excite Ao wave for long travel distances and to minimize clutter

• Damage can be identified in several ways
– group velocity approximately ? (E/? )1/2, damage slows down waves
– reflected wave from damage can be used to determine locations

• Present work uses piezoelectric sensors to detect energy present
in transmitted and reflected waves using self-sending actuators

Piezoceramic Actuator

Piezoceramic Sensors
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Building Block Approach
• Narrow coupon laminates

– same specimen used for FRM
– several types of damage

• Narrow sandwich beams
– various types of cores tested
– disbonds between laminate and core

• Stiffened plate
– various types of bonded ribs
– disbonds between laminate and rib

• Composite sandwich cylinder
– 0.4m diameter cylinder with core
– low velocity impacted region

1 m 2 cm

25 cm

25 cm
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• Actuation parameters determined from governing equations
– from material properties dispersion curves are calculated
– from group velocity dispersion curve, operating frequency selected
– from operating wavelength, actuator size is selected
– number of pulses to be sent determined by distance between features

• Excite Ao wave for long travel distances and to minimize clutter

• Experimental procedure for present work used these equations
– frequencies between 15-50 kHz 
– utilizes 3.5 sine waves under a Hanning window

Parameter Optimization

Piezoceramic Actuator

Piezoceramic Sensors

Sent Signal
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Thin Laminate Results: 
Time of Flight

• Time-trace of voltage signal from 
PZT sensor 20 cm from actuator 
driving at 15 kHz

• High degree of consistency 
between all control traces

• All damaged traces show a delay 
in time of arrival, and smaller 
amplitude responses

• Since these are short specimens, 
many reflections combine quickly

• While TOF is easily reproduced, 
difficult to measure accurately

Specimen labeled on plot
Superimposed control specimen
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Thin Laminate Results:
Wavelet Analysis

• Wavelet decomposition performed 
using Morlet signal, similar to FFT

• Compare received signal’s energy 
content at dominant frequency

• Control specimen clearly has the 
most energy transmitted

• Appears that as damage becomes 
more severe, more energy is lost

• Differences seem obvious enough 
for process to be automated

• Still not much information about 
damage type and location

Demonstrates ability to detect presence of damage and judge extent
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Damage Detection Results
• Wavelet coefficient plot for beam “blind 

test” compares energy content for 50 kHz
• Three “control” specimens with Al core, 

one has an unknown delamination
• Compared to a damaged specimen
• Top two clearly have more energy
• Bottom two with little energy present are 

debonded specimens

• Two composite plates with stiffening ribs 
compared, one with disbond

• Disbond yields fringe pattern in both 
reflected and transmitted wave

Indicates viability of wavelet method for use in at least simple structures
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Lamb Wave Method 
Conclusions

• Strengths
– shows great sensitivity to local presence of many types of damage
– potential for damage location calculation with self-sensing actuators

• Limitations
– method must be tailored for particular material and application
– patch size and location depends upon material, thickness, curvature
– high power requirement compared to other methods
– complex results by comparison to other methods
– results are localized to straight paths and max traveling distances

• SHM implementation potential
– could use same sensors as FRM to produce Lamb waves
– can integrate and compare transmitted and reflected energy
– groups of sensors to be placed in areas of concern for triangulation
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Other Piezo-Based Methods
• Piezo sensors used for FRM and Lamb wave methods can be 

used to implement other methods passively
• Strain monitoring

– programs at NASA and Boeing have used piezo’s to monitor strain 
– Hautamaki et al (1999) have fabricated MEMS piezoelectric sensors
– can use strain records to calculate stresses seen in operation
– present work used tensile test to compare strain in piezo and foil gauge

• Acoustic emission (AE)
– work performed at Honeywell, Northrup and Boeing with this method
– much work performed at MIT by Wooh (1998)
– most elaborate demonstration is Chang’s “smart-panel” (1999)
– can determine damage event occurrence and estimated location based 

on time of flight for impacts and fiber/matrix cracking
– present work performed pencil-break test on laminated plate
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Proposed SHM Architecture
• Several piezoceramic sensors and other system components on 

a generic 0.5x0.5 – 1x1 m patch with a thermoplastic backing
– strain, vibration, acoustic emission, Lamb waves
– some on chip processing
– wireless relay from patch
– to be placed in key locations

• Neural network behavior (ant colony scenario)
– system to be calibrated pre-operation to understand orientations
– several “dumb” sensors collectively making “smart” decisions
– sensors behave passively with AE and strain, occasional FRM
– when event occurs, will actively send Lamb waves to quarry 

damage, determine type, severity and triangulate location
– upon verification of damage convey to central processor

• Could gather information through ethernet port upon landing, run 
full vehicle test pre-flight as a preliminary insertion step
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Architecture Schematic

1 m

RF antenna

Processors & data acq.

Inductive pow
er

Lamb wave sensor

Eddy 
current 
sensor

AE sensor

FRM sensor

F-22 Raptor
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Concluding Remarks
• Piezoelectric materials are ideal for SHM applications

– can be used to implement a variety of NDE test methods
– both actuating and sensing capabilities
– light, low cost, low power, flexible, can be deposited

• Frequency response methods
– useful detection sensitivity to global damage
– little information on damage type or location
– can be used for first or last line of defense

• Lamb wave methods
– sensitive to local presence of many types of damage
– requires more power than most sensors, most tailor to application
– potential for triangulation of damage location and shape

• Recommendations for SHM system architecture
– based on experiment and analytical results
– use of multiple detection methods to gain maximum information
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Future Recommended Research
• Similar studies for other potential detection methods 

– acoustic emission
– eddy current

• Similar studies for other SHM components
– wireless communication systems
– data acquisition and processing 
– powering devices

• Increase complexity of tests
– test on built up fuselage section or helicopter blade
– test in service environment, noise and vibrations 
– use multiple sensing methods at once
– integrate multiple SHM components
– use MEMS components


