Durability Assessment of Lamb Wave-Based Structural Health Monitoring Nodes

Jeff Chambers, Brian L. Wardle, Seth Kessler

Technology Laboratory for Advanced Materials and Structures Dept. of Aeronautics and Astronautics Massachusetts Institute of Technology

Outline

- ✓ Introduction
- ✓ Framework for SHM Durability Testing
- ✓ SHM System for this Work
- ✓ Existing Test Standards
- Durability Testing Specifics and Procedures
- ✓ Experimental Results
- Conclusions and Recommendations

Introduction

- ✓ Structural health monitoring (SHM)
- SHM denotes a system with the ability to detect and interpret (adverse) changes in components
 - Ø Most current SHM work is on sensors/damage detection
 - Increased reliability/safety and reduced life-cycle costs
- Lack of testing standards and certification procedures
- This research presents a framework for developing testing standards, application of the framework to our system to generate specific tests/procedures, results from such tests

May 4, 2006

Framework for Developing SHM Durability Standards

- Use of existing standards for independent environmental or structural testing
 - Ø RTCA/DO-160E, MIL-STDs, ASTM
 - Environmental and structural testing overlap
 - Additional development required to be SHM specific
 - Combined testing
- SHM and smart structures
 - Ø Specific standards needed
 - Embedded
 - Surface mount
 - Systems are integral part of structure
 - Ø Define performance degradation

SHM System

✓ Surface-mounted Ultrasonic Transducers

- Ø Surface bonding
- Ultrasonic Lamb-waves Ø
- Ø Pulse-echo operation
- Inspection of structure's state away from node Ø
- ✓ 2024-T4 aluminum coupons
- ✓ Wave characteristics allow
 - ID type of damage Ø
 - Ø Location of damage
- v Delta metrics to assess performance

Research Approach

- ✓ Objective:
 - Ø To assess durability of a specific SHM system
- ✓ Approach:
 - Ø Define a framework and the specifics (tests & metrics) to meet this objective
 - Zailor current standards to form the framework
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 - Ø Define test matrix for initial set of tests
 - Ø Define 'delta'/change metrics to evaluate system performance
 - Ø Experimental testing of SHM system

Current Standards - Environmental

✓ RTCA/DO-160E

- "Environmental Conditions and Test Procedures for Airborne Equipment"
- Identified by the FAA as an acceptable test standard for compliance with certain environmental airworthiness requirements (FAR AC21-16E)

- Ø Defines procedures and criteria for airborne equipment ranging from light aircraft to commercial jets and transports
- ✓ MIL-STD-810F
 - "Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests"
 - Ø Guidance for environmental tests to qualify DoD components
- ✓ MIL-STD-461E
 - "Department of Defense Interface Standard Requirements for the Control of Electromagnetic Interference Characteristics of Equipment"
 - Ø Describes test protocols for EMI testing of DoD electronic components

Down-Selection Example

✓ RTCA/DO-160E test categories

- Ø Down-selected test categories
- Eventually, all categories must be addressed

	5
4.0	Temperature and Altitude
5.0	Temperature Variation
6.0	Humidity
7.0	Shock
8.0	Vibration
9.0	Explosion Proofness
10.0	Waterproofness
11.0	Fluids Susceptibility
12.0	Sand and Dust
13.0	Fungus Resistance
14.0	Salt Spray
15.0	Magnetic Effect
16.0	Power Input
17.0	Voltage Spike Conducted
19.0	Audio frequency Conducted
10.0	Susceptibility
19.0	Induced Signal Susceptibility
20.0	RF Susceptibility
21.0	Emission of RF Energy
22.0	Lightning Induced Transient
	Susceptibility
23.0	Lightning Direct Effects
24.0	Icing
25.0	Electro-Static Discharge
26.0	Fire, Flammability
27.0	Smoke Density, Toxicity

Confidential Property. Not for Distribution. MIT © 2006

May 4, 2006

Test Matrix

= Completed and re Structural

al Environ mental

SHM Durability

Test Type	Test Specifics	# of Test Types	Samples/ Test Type	Comments
High Temperature	ture Ramp to operating high temp.		3	Extreme high operating temp = 85°C.
Low Temperature	Ramp to operating low temp.	1	3	Extreme low operating temp = - 55°C.
Thermal Shock	10°C/min. minimum change rate.	1	3	Ramp between high and low extreme.
Humidity	65°C and 95%RH.	1	3	Pure water (no salts).
Fluid Susceptibility	Oil based and water based fluids tested.	2	3	Fuels, oils, hydraulics, etc.
Low Pressure	Simulate high altitude.	1	3	Altitudes = -4,572 m to 21,336 m.
EMI	-	-	-	Testing to be done by MDC.
V Static Strain	Static mechanical strain.	1	1	Tensile tests to 0.2% strain.
Fatigue	Dynamic mechanical strain.	1	3	Tailored from ASTM E466-96.
Low Velocity Impact	Barley visible damage and visible damage.	2	3	Impact to produce BVID and VID.
Vibration	-	1	3	Defined by DO-160E §8.
Total	-	12	34	-

Temperature - Two Test Types

✓ High Temperature

- simulates exposure to extreme elevated temperatures for storage (desert regions) and designed flight conditions
- ø extreme temperature defined as 85°C (185°F)
- Ø specimen begins at ambient conditions and continuously operating
- ø temperature ramped to elevated temperature and stabilized
- ø held for 2 hours before returning to ambient temperature
- ø performance of sensors tested after test.

✓ Low Temperature

- simulates exposure to reduced temperatures for storage (artic regions) and flight conditions (high cruise).
- ø same procedure as high-temperature test
- Ø extreme defined as -55°C (-67°F)

Experimental Specifics - Temperature

✓ High-temperature tests

- ø specimens placed in oven
- ramped to operating high temperature
- stabilization period followed by 2 hour hold
- Ø operating entire test
- performance assessed periodically throughout test

Static and Fatigue Structural Tests

✓ Static Strain

- ø simulates normal strain levels experienced during operation
- step strain level to tensile yield strain (0.2% offset) testing performance at each step
- relax strain by stepping down strain and testing performance at each step

✓ Fatigue

 simulates the cyclical strains experienced by structural components over the life of an aircraft

Experimental Specifics – Static Strain Test

- Ø MTS tensile-compression machine with Instron controller
- ø displacement controlled test
- Ø loaded near yield strain
- ø performance assessed at each step

Results – High-temperature Testing

- Ø 3 tests conducted
- Ø No visual damage
- Ø -0.5% TOF change
- Ø -14.7% voltage change
- Shear couplant flowed, likely the source of change in voltage.

Time [µs]

	T	OF	Peak Voltage	
	1 st wavepacket	2 nd wavepacket	1 st wavepacket	2 nd wavepacket
Baseline	221 µs	308 µs	4.620 mV	3.495 mV
Post-test	220 µs	306 µs	3.619 mV	4.027 mV

Results – Static Strain Testing

- Ø 0.5% TOF change
- 46% voltage change
- Ø No visual damage
- Source of large voltage change currently under investigation

	T	DF	Peak Voltage	
	1 st wavepacket	2 nd wavepacket	1 st wavepacket	2 nd wavepacket
Baseline	228 µs	311 µs	6.635 mV	6.403 mV
Post-test	229 µs	313 µs	3.513 mV	3.541 mV

Conclusions and Recommendations

- Current testing and certification standards can serve as foundation for SHM standards
- SHM system tested is affected by thermal and strain excursions
 - Ø Sensors and system survived both excursions
- ✓ Difficult to define "system"
- Combined environmental/structural tests
- Contributions from SHM community, government, and commercial and military aircraft manufacturers necessary

Acknowledgements

- This research was sponsored by the Air Force Office of Scientific Research under STTR Phase II award FA9550-05-C-002 entitled "Intelligent Multi-Sensing Structural Health Monitoring Infrastructure"
- ✓ Guidance from Air Force program managers:
 - Ø Mark Derriso (AFRL) & Captain Clark Allred, Ph.D. (AFOSR)
- ✓ Special thanks to Aaron Size (MDC) and Jay Miller (MIT)