Pattern Recognition for Damage Characterization in Composite Materials

Seth S. Kessler, Ph.D.
Pramila Rani, Ph.D.
Introduction

- Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse “changes” in a structure in order to reduce life-cycle costs and improve reliability.

- Essentially involves integrating non-destructive evaluation (NDE) devices into a vehicle to collect prognostic data:
 - SHM could reduce inspection/maintenance costs by 33% through CBM,
 - can catch damage that may have occurred between scheduled intervals,
 - integrate SHM systems into new vehicles or retrofit for ageing vehicles.

- Applicable to any field – highest payoff in air/spacecraft.
Damage in Composite Materials

- Several challenges involved in detecting damage in composites
 - metals: corrosion and fatigue vs. composites: delamination and impact
 - modes interact, conducting fibers within insulative matrix
 - damage often below the visible surface, visual inspection overlooks

- Categorization of damage in composites
 - ideally would like a binary top-level pristine or damaged categorization
 - taking micromechanics view, material is fabricated with flaws
 - microscopic flaws grow slowly, accelerated overload or impacts events
 - damage threshold must be defined for some detectable flaw size level
State Classification

• Would like further classification beyond presence of damage
 - limited features may be used to separate damage and no damage
 - potential for large mode space for composites
 - may not be feasible to distinguish between modes if linearly inseparable

• Must extract many separate features for detailed classification
 - pattern recognition methods can be trained to characterize damage
 - large feature set may lead to redundancy and computational inefficiency
 - feature reduction techniques can be employed to reduce dimensionality
Data Acquisition

- Lamb wave is an elastic perturbation propagating in solid media
 - excitation shape and frequency can be optimized for particular geometry
 - group velocity approximately $\propto (E/\rho)^{1/2}$, damage slows down waves
 - reflected wave from damage can be used to determine locations
 - utilize concentric piezoelectric actuator/sensor pairs in pulse-echo mode

- Many advantages to Lamb waves over traditional methods
 - best damage size and range to sensor size ratios
 - sensitivity and range scales with input power level (with limitations)
Signal Conditioning

• Employed to de-noise acquired signal from unwanted content

• Noise can generally be described by 2 categories
 ➢ incoherent or “white” noise can be removed through averaging
 ➢ coherent or EMI noise can be extracted in the frequency domain
 ➢ close attention must be paid to signal phase

• Another important component is removal of unwanted artifacts
 ➢ could include boundary conditions as well as pre-existing conditions
 ➢ achieved by various methods in time, frequency and/or wavelet domains
 ➢ eliminate misleading signal characteristics, typically by using baselines
Feature Extraction

- Discriminative features from Lamb waves needed for analysis
- Time Domain features
 - time of flight, time position of max and subsequent secondary peaks
 - time features can be observed from raw data itself with little processing
- Frequency Domain features
 - max PSD value, shift in frequency response from baseline, phase value
 - frequency features extracted using Fourier or Wavelet decomposition
- Energy Domain features
 - max amplitude, total energy, mean/dev for signal, 1st and 2nd difference
 - features extracted through time and frequency-based functions
Feature Selection

- Select most representative and discriminative features from set
 - too few features could result in reduced accuracy
 - larger set does not imply better classification, may degrade performance

- Many ways to select producing varying accuracy and efficiency

- Traditional method is one-way Analysis of Variances (ANOVA)
 - accomplished by comparing means of columns of data
 - selection based on probability that feature is unique to particular states

- Principal Component Analysis (PCA)
 - technique for reducing dimensionality of dataset
 - transform multi-dimensional coordinate system to maximize variability
Feature Selection - PCA

- Natural coordinate system of data is transformed
 - original data represented as voltage vs time or intensity vs frequency
 - greatest variance captured by the 1st coordinate (1st principal component)
 - 2nd greatest variance by the 2nd coordinate, etc

- Select principal components that encapsulate most variability
 - data can be reconstructed with low order dimensionality
 - remaining components can be discarded
 - 20 PC’s capture 70\% of the variability for 1000 point voltage vs time data
Weighted Difference Algorithms

Undamaged plate

Plate with simulated damage

Sensor Signals

Baseline Test

Voltage, V

Continuous Wavelet Transform

Coefficients

Baseline Test

Continuous Wavelet Transform

Damage detected!!

Frequency, Hz

Time, µs

AIAA. SDM Conference 2007

MDC Proprietary
Pattern Recognition Algorithms

• Collection of mathematical models used to associate a set of test data with one of several pre-designated classifications
 - some methods are statistical, others have learning capabilities
 - all PR methods require training sets to define class “profile”

• 3 different pattern recognition techniques were investigated
 - K-Nearest Neighbor (KNN)
 - Neural Network
 - Decision Tree

• Each method was implemented independently, as well as in combination with other methods bound by simple logic
Pattern Recognition: Nearest Neighbor

• Method
 ➢ supervised learning algorithm
 ➢ category of new data point is determined based on the closest neighbor
 ➢ K-nearest neighbor is based on majority category of K-nearest neighbors
 ➢ not a learning algorithm but based on memory where a new instance is based on input features and training samples

• Advantages
 ➢ analytically tractable
 ➢ simple implementation
 ➢ uses local information, which can yield highly adaptive behavior
 ➢ lends itself very easily to parallel implementations

• Disadvantages
 ➢ large storage requirements (worse as K increases)
 ➢ computationally intensive recall (worse as K increases)
 ➢ most noise sensitive (particularly at low K values)
Pattern Recognition: Neural Networks

• Method
 - machine-learning technique that uses weighted links
 - simulates a network of communicating nerve cells
 - input/output data is utilized to train the network
 - network links are modified to capture the knowledge, so that after it has been adequately trained, it can be used to classify new input

• Advantages
 - applicable to multivariate non-linear problems & parallel implementation
 - no need to assume an underlying data distribution (statistical modeling)
 - robustness towards noisy data, well suited for sensorial data processing

• Disadvantages
 - minimizing overfitting requires a great deal of computational effort
 - model tends to be black box or input/output table without analytical basis
 - need for large training sets (exponentially more sets than defined states)
Pattern Recognition: Decision Tree

• Method
 - essentially a series of “questions and answers”
 - data enters “trunk” and “branches” represent conjunctions of features
 - lead to single classification or “leaf”
 - weight of each decision is implicit in the hierarchy of the branch structure
 - several trees assembled into “forest” can achieve a statistical consensus

• Advantages
 - requires the least data and accommodates missing features
 - in-built feature selection and weighing
 - tree structure inference builds domain knowledge
 - nonparametric or "distribution free"

• Disadvantages
 - unstable decision trees may be produced
 - data split only by one variable at a time, rules deduced may be complex
 - trees may be overfitted
Experimental Setup

- 11.75” x 0.1” square quasi-isotropic CFRP laminates, 2 sensors
- Lamb wave tests performed in pulse-echo mode at 100kHz
- 3 damage modes investigated with 4 levels of severity for each
- 100 pulse-echo tests per configuration, total 9000 data sets
 - 1 sensor for each damage type was designated as the “training node” and all data collected was used to train PR algorithm
 - other sensors on same and all separate plates were “testing nodes” used to collect experimental data for subsequent predictions
M.E.T.I.-Disk 3 Digital SHM Nodes

- Monitoring & Evaluation Technology Integration
 - concentric piezoceramic sensor/actuator elements
 - rigid-flex technology used for ADC & DAC
 - mini-USB connector for power and data transfer
 - 1” diameter urethane encapsulation for durability

- Digital SHM infrastructure (TRL 6 demonstrated)
 - Lamb wave, modal analysis, AE capable
 - 2 channel 1MHz 16-bit ADC & 1MS/s 8-bit DAC
 - 20Vpp drive voltage, programmable gains
 - daisy-chain compatible using CAN bus

- Point-of-Measurement (POM) sensing
 - RAM enables local filtering, logic & computation
 - digitizing at POM minimizes EMI introduction
 - digital bus requires less cabling then analog
Experimental Results

- Representative raw voltage versus time for center-drilled hole
 - compares signals from the undamaged plate with most severe ½” hole
 - visually signals appear nearly identical in the time domain
- 16 total features were extracted from 3-domains
- Both ANOVA & PCA-based selection approaches investigated
Cluster Plots

Time & frequency-based feature selection

PCA-based feature selection

- Preliminary analysis with ANOVA yielded undesirable accuracy
 - all features passed p-value test indicating viability distinguishing classes
 - although classes can be separated, cluster boundaries are diffused
- Subsequently PCA-based approach yielded improved results
 - 20 PC’s represent 70% variance of 1000 point data set
 - it can be observed from 3 PC’s all classes can be clearly separated
Pattern Recognition Results

<table>
<thead>
<tr>
<th>PREDICTED</th>
<th>No Damage</th>
<th>Drilled Hole</th>
<th>Delamination</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL</td>
<td>ND</td>
<td>1/32”</td>
<td>1/16”</td>
<td>1/8”</td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>No Damage</td>
<td>ND</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Drilled Hole</td>
<td>1/32”</td>
<td>0%</td>
<td>86%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>1/16”</td>
<td>0%</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>1/8”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1/4”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1/2”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1.5”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Delamination</td>
<td>4”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>8”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>16”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>32”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Impact</td>
<td>4”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>8”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>16”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>32”</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Confusion matrix exhibits statistical accuracies KNN predictions
- 100% accuracy damage presence & type classification
- 77% severity classification, 99.9% including adjacent cells
Conclusions

• Results of PR-based methodology have been very successful
 ➢ obtained using an optimized K-Nearest Neighbor code without logic
 ➢ 100% presence accuracy without any false positives or missed damage
 ➢ 100% type of damage accuracy without any mis-classifications
 ➢ 99.9% severity prediction including adjacent levels (77% without)

• Sufficient results for technician to make a repair decision
 ➢ achieve “adjacent” results by intelligently selecting severity boundaries
 ➢ accuracy would improve with additional training data

• Achieved using separate plates for training and testing
 ➢ broad implications for feasibility of eventual commercial implementation
 ➢ single validated training data set needs to be deployed for entire fleet
 ➢ can account for variability in sensor fabrication and placement
 ➢ accommodate “real” damage types such as delamination and impact
Acknowledgments

• This research was sponsored by the Air Force Research Laboratory Materials and Manufacturing Directorate (AFRL/ML)
 - SBIR Phase I award FA8650-06-M-5026
 - “Damage Identification Algorithms for Composite Structures”

• AFRL program managers:
 - Dr. Richard Hall
 - 2ndLt William Bridges