

Vector-based Damage Localization for

Anisotropic Composite Laminates

Dr. Seth S. Kessler & Dr. Ajay Raghavan Metis Design Corporation

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

Guided Wave-Based SHM Methods

- Form of elastic perturbation that propagates in a solid medium
 - best damage size & detection range to sensor area ratio
 - > sensitivity and range scales with input power level (with limitations)
 - > advantages for detecting/characterizing local damage over large areas
- Research utilizes concentric piezoelectric actuator/sensor pairs
 - > excitation shape and frequency can be optimized for particular geometry
 - > pitch-catch: group velocity \propto (E/ ρ)^{1/2}, damage slows down waves
 - > pulse-echo: reflected wave used to determine damage locations

Motivations: Sensor Density

- Traditional methods need high sensor density for good location
 - > pitch-catch measures delays and/or scatter along direct sensor line paths
 - pulse-echo determines reflected radius of damage from TOF
 - ➢ both cases require at least 3 nodes in close proximity to triangulate
- Prediction resolution scales w/sensor array proximity (density)

Pitch-Catch GW Methods

Pulse-Echo GW Methods

Motivations: Wave Velocity

- Complications arise in non-isotropic/homogeneous applications
 - composite & anisotropic materials present velocity ellipses & stars
 - > stiffened regions with ribs or doublers exhibit local acceleration of wave
 - tapered or ply-drop-off regions yield continuously changing velocity
- Prediction resolution scales w/accuracy of wave velocity as $f(\theta)$

Angle (degrees) © 2009 Metis Design Corporation

Damage Vector Locator™

- New method devised to resolve motivating issues
 - U.S. Patent No's 7,533,578 & 7,469,595
 - novel sensor coupled with innovative algorithm
- Single practical solution for real structures
 - > high detection resolution with reduced minimized sensor density
 - velocity independence to locate damage in complex configurations

© 2009 Metis Design Corporation

- Method predicts damage location without structural details
 - > vector from 1 node to damage location if velocity " $V_g(\theta)$ " is known
 - rays from 2 nodes intersect to identify unique location without velocity
 - > 3rd node provides triple redundancy by virtue of ray combinations
- Effective for both guided waves & acoustic emission
 - > actively this method uses guided waves to seek out damage position
 - passively this method uses acoustic emission to indicate impact location

Theory & Algorithm

- Structure is excited omni-directionally by PZT actuator
 > 4 co-located concentric sensor elements measure reflection
 - > results are plotted in cylindrical coodinates as a function of time
- Incident angle is determined by slight differences in phase
 method relies on fast acquisition to resolve differences
 multiple levels of peak-detection required (interpolation, oversampling)

$$\phi = \operatorname{atan2} \left(t_4 - t_2, t_3 - t_1 \right) \text{ if } \left| t_4 - t_2 \right| \ge \left| t_3 - t_1 \right|$$

= $\operatorname{atan2} \left(t_3 - t_1, t_2 - t_4 \right) - \pi/2 \text{ otherwise}$

• Distance to damage determined by TOF or vector intersection

$$r = 0.5 c_g \left(\frac{t_1 + t_2 + t_3 + t_4}{4} - t_a \right)$$
 isotropic

© 2009 Metis Design Corporation

Single-Node Validation Tests

- Damage Vector Locator[™] setup
 - PZT device laser fabricated & selectively electroded
 - > geometry optimized for A₀ Lamb wave (fundamental antisymmetric)
 - > 90 kHz 3.5-cycle toneburst signal modulated by a Hanning window
 - > synchronously sampling 10 MHz data acquisition channels

Test setup

- > 0.9 m square 3.2 mm thick 6061 aluminum plate (isotropic)
- small magnets used to simulate "inverse" damage (increased stiffness)
- > 3 damage sizes: 3.2 mm, 6.4 mm and 12.7 mm diameter
- > 36 data collection points (10° increments) located around a 0.5 m circle

Experimental Results (3.18 mm)

Actual versus Predicted Damage (3.18 mm Damage Diameter)

Experimental Results (6.35 mm)

Actual versus Predicted Damage (6.35 mm Damage Diameter)

Experimental Results (12.7 mm)

Actual versus Predicted Damage (12.7 mm Damage Diameter)

Experimental Distance Results

Angular Position Error

- Overall average absolute angular error was 2.4% (8.6°)
 - highest error occurred at odd multiples of 45°
 - Iowest error occurred at multiples of 90°
- Slight dependency on size, error increases with larger damage

Damage (mm)	Maximum (degrees)	Maximum (%)	Average (degrees)	Average (%)
3.18	21.1	5.9%	8.6	2.4%
6.35	22.9	6.4%	8.2	2.3%
12.7	24.3	6.8%	9.1	2.5%

Radial Position Error

- Overall average radial error was 0.9% (2.4 mm)
 - no apparent angular dependency
 - > no apparent damage size dependency in the absolute sense
 - > algorithm tended to under-predict distance as damage size increased
- Results obtained using isotropic aluminum wavespeed

Damage (mm)	Maximum (mm)	Max. Error (%)	Avg. Error (mm)	Avg. Error (%)
3.18	6.2	2.5%	3.2	1.3%
6.35	4.3	1.7%	1.1	0.4%
12.7	6.5	2.6%	2.8	1.1%

Single-Node Validation Discussion

- Reconciling average methodology error
 - > 2 cm diameter SHM node on a 0.5 m diameter circular area (1963.5 cm²)
 - Iocate damage as small as 8 mm² with an area of uncertainty of <1.0 cm²
- Provides a path to reliable & efficient damage location detection
 > greatly reduced density & increased accuracy over pitch-catch methods
 > removes velocity dependency of pulse-echo methods
 > eliminates blind-spots & dead-zones produced by phased arrays
- Following single-node validation of sensor & algorithm, next step was to validate dual-node ray intersection concept

Dual-Node Tests on CFRP

- Composite plate tested w/4 nodes along diagonals
 - > 75 x 75 cm graphite/epoxy plate, 2.5 mm thick
 - > 6.4 mm damage in 32 locations within 25 cm square w/nodes at corners
 - identical test setup, data collected from each node asynchronously
- No properties were known for laminate (fiber, matrix, layup, etc)

- Data processed in Matlab to produce velocity-independent rays
 - predicted location based on intersection of 2 strongest ray signals
 - > error map shows distance between actual position (o) & prediction (\uparrow)
- 32 mm² damage reliably located within 625 cm² detection zone
 - > average positional prediction error was ~1 cm, 5 cm max error
 - 22 predicted locations had < 3 mm positional error</p>

© 2009 Metis Design Corporation

Continuing Research

- SHM improves reliability, safety & readiness @ reduced costs
 - > adds weight, power consumption & computational bandwidth
 - > analog cable runs introduce EMI susceptibility & signal attenuation
 - scaling SHM for large-area coverage has presented challenges
- Local sensor digitization
 - > U.S. Patent No. 7,373,260 & Other Patents Pending
 - > convert analog signals into digital data at point-of-measurement (POM)
 - > eliminates EMI & attenuation, introduces distributed computation
 - > can serially connect sensors on sensor-bus to minimize total cable length

© 2009 Metis Design Corporation

Intelligent SHM Infrastructure

- Intelli-Connector[™] HS hardware
 - > ARB & oscilloscope replacement
 - ➤ 50 MHz 12-bit acquisition (6 channels)
 - > 40 MS/s 12-bit excitation (20 Vpp)
 - > 1 Gbit buffer & 16 Mbit static memory
 - ➤ synchronous to 10ns on CAN bus
 - ➢ MIL-810/DO-160 encapsulation
 - > 40 mm diameter x 6 mm, 15 g mass
 - ➤ can house damage vector locator[™]
- Facilitates multiple SHM methods
 - > guided waves & acoustic emission
 - improves accuracy w/EMI reduction
 - can integrate algorithms in FPGA

Summary

- Proof-of-concept results presented for damage vector locator[™]
 > novel SHM sensor design & innovative algorithm were developed
 > 1-node system demonstrated on isotropic aluminum plate
 > 4-node system demonstrated on unknown CFRP plate
- Method provides path to reliable & efficient damage location detection for large-scale complex composite structures
 - ➤ requires minimum sensor density
 - > requires no material properties or structural configuration information
- Future work
 - ➤ integrated testing with Intelli-Connector[™] HS electronics
 - embed algorithms within FPGA for digital position output
 - couple method with damage characterization algorithms