

Structural Health Monitoring using

CNT-Enhanced Composites

Dr. Ajay Raghavan, Dr. Seth S. Kessler & Dr. Christopher Dunn Metis Design Corporation

> Derreck Barber, Sunny Wicks & Prof. Brian L. Wardle Massachusetts Institute of Technology

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

Motivation For CNT-based SHM

- SHM improves reliability, safety & readiness @ reduced costs
 - > sensors add weight, power consumption & computational bandwidth
 - > cables add weight, complexity, as well as durability & EMI concerns
 - scaling SHM for large-area coverage has presented challenges
- Advantages of proposed CNT-based SHM methodology
 - > sensing elements actually *improve* specific strength/stiffness of structure
 - > conformal direct-write (DW) electrodes lighter & more durable than cable
 - > simple to scale over large structure, maintains good local resolution

© 2009 Metis Design Corporation

Specific strength, $\sigma_f / \rho [MPa/(kg/m^3)]$

Carbon Nano-Tube (CNT) laminates are a natural progression for aerospace composites due to their superior specific strength & stiffness

Present CNT Challenges

- Several issues have hindered effectiveness of CNT engineering
 - dispersion: uniform distribution of CNTs in epoxy matrix for homogeneity
 - adhesion: CNT-matrix interfacial bonding for effective load transfer
 - orientation: non-random alignment of CNTs to amplify properties
 - forests: building larger macroscopic structures by linking individual CNTs
- Most investigators focus on addressing 1-2 of these issues individually, yielding marginal improvements
- Simultaneously achieving all 4 necessary to achieve true potential of CNTs for enhanced composite structures

Growth of Aligned CNTs

- MIT has developed a novel (patent pending) CNT process
 - > good alignment, dispersion & adhesion yields high CNT volume fraction
 - provides excellent in-plane & <u>through thickness</u> conductivity
- Atmospheric pressure chemical vapor deposition (CVD)
 - self-aligned morphology 10¹⁰-10¹¹/cm² of continuous CNTs (7-10 nm OD)
 - rapid forest growth of > 2 microns/second (up to 5 mm long)

© 2009 Metis Design Corporation

IWSHM '09

Nano-Engineered Composites

Use aligned CNTs to reinforce and tailor existing advanced composites

IWSHM '09

Baseline
 CNT reinforced

Baseline
 CNT reinforced

CNT-Enhanced Composites for SHM

- Aligned CNTs greatly enhance composite laminate properties
 mechanically improve impact, delamination & fatigue resistance
 multifunctional capabilities introduced by conductivity & piezoresistivity
- Present research exploits CNTs for in-situ damage imaging
 > direct-write (DW) electrode grids applied similar to LCD technology
 > in-plane & through-thickness resistance measurements collected
 - surface & sub-surface damage images produced in post-processing

© 2009 Metis Design Corporation

Direct-Write Technology

- Subject of recently completed Phase I NASA SBIR
 - Direct-Write (DW) technology can be used to replace traditional cables
 - > silver inks & copper sintering patterned on structure for conductors
 - polymers & ceramic deposited on structure for insulators
- TRL for DW technologies is at least 8
 - DW implemented by Boeing on commercial aircraft production line
 - successful durability/longevity testing, FAA approved technology

© 2009 Metis Design Corporation

IWSHM '09

Proof of Concept (POC) Approach

- Instrument FFRP laminates with DW silver-ink electrodes
 - > painted electrode grid inspired by flat panel liquid crystal display (LCD)
 - "active" columns on one laminate surface as positive electrode
 - ➤ "passive" rows on opposite surface as ground electrode
- Select row/column(s) for resistance measurements
 - both in-plane and through-thickness measurements possible
 - > manually selected with alligator clips for preliminary experiment
 - > multiplexing micro-switches used to select pairs in further experiments
- High-resolution resistance change maps interpolated from data
 - Admage breaks CNT links around affected zone, increases resistivity
 - in-plane results for grid-boxes of intersection row/column pairs
 - through-thickness results for grid-points of intersecting row/columns

POC Specimen Preparation

- FFRP laminate fabricated
 - > alumina fiber satin-weave cloth dipped in solution of 50 mM iron nitrate
 - catalyst coats fibers with CNT "seeds" inside tows of ply
 - > CNTs grow radially aligned 20-50 μ m with modified thermal CVD method
 - 2 plies stacked by hand layup
 - ➤ West SystemsTM Epoxy system infused for 12-hour RT cure
 - > ~50% fiber volume fraction & < 2% void fraction (115 x 25 x 2 mm)
- Silver-ink electrodes applied w/masked silk-screening process
 - > 14 parallel conductors patterned in short-dimension on top plate surface
 - > 4 parallel conductors patterned in long dimension on opposite surface
 - ➤ traces were all 1.5 mm wide and spaced 3 mm edge-to-edge

POC Experimental Procedure

- Electrical resistance measured by multimeter
 - > initial data showed significant variability due to contact resistance
 - > subsequently thick wires were bonded to traces using silver epoxy
 - > resulted in < 1% change (< 0.1 Ω for ~10 Ω trace) across 10 repeat trials
- Centered impacted with 13 mm diameter steel ball at 75 ft-lbs
 - > calibrated to just initiate surface micro-cracking with trial impacts
 - > no damage visible to unaided eye, but microscopy revealed cracking
 - > post-damage resistance measured between pairs & through thickness

POC Results

- In-plane resistance between parallel pairs of adjacent traces
 - \succ "short" traces averaged 9 Ω resistance pre-impact
 - > 100% change in middle traces, < 10% change for outermost trace pairs
 - minor changes < 1% measured between long trace pairs</p>
 - > appears to be more sensitive to surface cracking
- Through-thickness resistance at each virtual grid point
 - > 56 through-thickness grid points averaged 20 Ω resistance pre-impact
 - > > 100% change in middle points, < 10% change for "left" half points
 - > resistance offset introduced by cracks across traces on "right" half points
 - > appears to be more sensitive to delamination

Continuing Research

- Method validation with more comprehensive test matrix
 - > 8 FFRP specimens (115 x 25 x 2 mm)
 - > 3 baseline specimens (no CNT enhancements)
 - > observe effects of multiple progressive impact events 25-100 ft-lbs

Process improvements

- > refined silk-screening process to reduce trace resistance & variability
- Ilexible circuit frame for connection with DW traces
- > dedicated hardware designed for expedited & consistent data collection
- Additional planned measurements
 - > pre & post-damage tensile tests to evaluate residual strength & stiffness
 - baseline measurements to quantify effect of trace compression
 - > data collected from both ends of traces to eliminate constant offsets

New Specimen Preparation

- Traces using refined DW process
 - ➢ 8 traces 1.5 mm wide on first surface
 - > 32 traces 1.5 mm wide on opposite surface
 - ➤ all traces spaced by 1.5 mm
- Greatly enhanced resolution
 - ➢ 32 x 8 traces versus 14 x 4 traces
 - through-thickness proportional to intersections
 - ➤ in-plate proportion to top pairs x bottom pairs
 - both cases results in > 4x resolution

Flex-Frame

• Flexible circuit frame (flex-frame) designed

- > provides electrical continuity from traces to hardware
- > reliable & consistent, eliminates contact resistance
- > also incorporates marks for better DW alignment

Simple construction

- single double-sided copper-coated-Kapton w/coverlay
- > 80 pin SMT header connector (2 rows of 40-pins)

Easy installation

- flex-frame is bonded using AE-10 w/exposed pads
- DW traces are drawn over pads
- scalable process demonstrated in NASA SBIR

Multiplexing Hardware

- Original data collected by hand with multimeter
 - > some variability introduced by manual connections & settling times
 - \succ fewer trace combinations measured because of testing time ($\frac{1}{2}$ day)
- New multiplexing hardware designed dedicated to this research
 - > connects directly to flex-frame via SMT header, PC via RS-232
 - > dual multiplexer banks to select 2 traces for measurement
 - > constant current applied through 2 traces, measure 16-bit voltage
 - ➤ resistance directly related to V/I
- Allows many more combinations to be measured quickly
 > 1140 total measurements (including both sides of traces)
 - > test time dependant on determined settling time (1 second to 1 hour)

Alternative Approaches

- Alternative SHM schemes also being explored
 - exploiting dynamic piezoresistivity property of CNTs
 - ➤ acoustic emission (AE)
 - ➢ guided waves (GW)
- Same hardware & flex frame can be used to measure dynamic resistance changes induced by wave perturbations
 - > initial "pencil-tap" experiments has verify that AE can be detected
 - > enable AE-based SHM without additional external sensor network
 - > static & dynamic monitoring could occur simultaneously in software

- > automated DW methods apply electrodes over flex-frame/structure
- ➤ hardware mounted locally to control each flex-frame, digitally networked

• Operation

- > dynamic measurements would indicate impact event occurrence
- static measurements would localize & characterize damage
- CNT-based NDE methods could provide more resolution on ground

• Further research areas

- > electrode spacing versus damage size for optimization table
- > compensation for mechanical load, hysteresis or thermal effects

Acknowledgments

- This research was sponsored by AFOSR
 - SBIR Phase I award FA9550-09-C-0165
 - Topic AF08-T023 "SHM of CNT-Enhanced Composites"
 - ➢ program manager: Dr. Charles Lee
- Massachusetts Institute of Technology
 - joint development of concept & supporting fabrication
 - > principal investigator: Prof. Brian L. Wardle
 - fabrication support from: Derreck Barber & Sunny Wicks
- Metis Design Corporation
 - > Dr. Ajay Raghavan, Dr. Chris Dunn & Michael Borgen
 - direct-write research funded by NASA/ARC award NNX09CC57P
 - SHM hardware funded by AFRL/VA award FA8650-08-C-3860

metis design