Hybrid Passive/Active Impact Detection & Localization for Aerospace Structures

Seth S. Kessler, Ph.D. | President/CEO 11 September 2013 | International Workshop on Structural Health Monitoring

structural health monitoring multi-functional materials lean enterprise solutions

205 Portland St • Boston, MA 02114 • 617.447.2172 • http://www.metisdesign.com

Introduction

- Aerospace vehicles are subject to impact damage
 - foreign object debris (FOD)
 - battle damage (and bird strike)
 - > ground handling (or mishandling)
- Recording of damage event and/or resulting damage provides for timely & cost effective repairs (or prevents unnecessary ones)
- MD7 Digital SHM System
 - > passive mode (acoustic emission recording)
 - > active mode (guided wave propagation)
 - > witness mode (differential voltage measurements)

MD7 Motivations: Beamforming

- Traditional SHM methods require high sensor density
 - > many methods only detect below sensor (fiber optic, Eddy current, CVM)
 - wave-based methods can cover large areas with small sensors, however acoustic emission & scatter methods need 3+ sensors in close proximity
- Most wave-based methods require knowledge of wave velocity
 - > challenging to compensate for velocity in non-isotropic laminates
 - > complications arise due to inhomogeneity (tapers, stiffeners, drop-offs)

© 2013 Metis Design Corporation

IWSHM13 3 of 20

MD7 VectorLocator[™]

- Analog sensor base for impact/damage detection
- 1 PZT actuator & 6 PZT sensors in small package
- Facilitates both active/passive beamforming

N Vector Locator nodes Damage

MD7 Motivations: Digital Network

- Current SHM strategies are analog, do not scale practically
 - > individual cables to each element adds mass, cost, reliability concerns
 - centralized processing can limit the total quantity of sensors on structure, required to handle significant data volume synchronously
- Analog cables not ideal for precision measurements
 - susceptible to conducted & radiated EMI (long wires = antenna)
 - > shielded signals attenuate linearly with length due to stray capacitance

© 2013 Metis Design Corporation

IWSHM13 5 of 20

MD7 IntelliConnector[™]

- Digital node for distributed acquisition & computation
- Facilitates both active/passive detection methods
- Flat Flexible Cable (FFC) bus for up to 200 nodes

© 2013 Metis Design Corporation

40 mm

Installed MD7 SHM System

© 2013 Metis Design Corporation

IWSHM13 7 of 20

Data Analysis & Reconstruction

Each node processes phase-coherent, location independent "sonar-scan"

© 2013 Metis Design Corporation

IWSHM13 8 of 20

metis design

Experimental Performance Evaluation

- Experiment designed to evaluate performance of hybrid system
 - detection/localization of impact events
 - detection/localization of damage induced by impact events
 - detection/localization of loosened fasteners
- Specimen selected to be representative of aircraft/rotorcraft skin
 - > Aluminum sheet 2 mm thick, 0.6 x 0.6 m square
 - > 20 fasteners evenly spaced across the center, tightened to same torque
- Single MD7 sensor/node used
 - > bonded with AE-10 using 24-hour room temperature cure cycle
 - > centered half-way between edge of plate and row of rivets
 - Flat flexible cable (FFC) used to connect to hub (command & data storage)

Representative Aerospace Specimen

Test Procedure

- Falling-mass low-velocity impacts
 - 1 cm semi-spherical impact head
 - > ~20 J of energy per impact
 - strike on side opposite and at least 2 cm from sensor/node
 - > simply-supported perimeter with wooden frame
 - > active guided wave scans performed with 50 kHz excitation
- 36 impact events monitored passively that triggered active scans
 - > 18 impacts randomly distributed on same side of fastener line as nodes
 - > 18 impacts randomly distributed on opposite side of fastener line as nodes
- 42 active scans were triggered manually
 - > 6 scans followed the loosening (hand-tight) of a random fastener
 - > 36 scans without impact or loosened fastener (false positive check)

IWSHM13 11 of 20

Passive Mode Impact Detection Results

- System showed excellent sensitively to impact events
 - > 100% detection (36/36) following impact events
 - > no false triggers at pre-programmed threshold
 - > phase coherent scan produced for each AE result
 - Cartesian coordinates distilled for maximum likelihood centroid of scan
- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - > predictions cluster relatively closely near origin relative to size of plate
 - > mean error for AE localization ~ 25 mm
 - > no trend observed for results obtained on one side of fastener line vs other

Re-Centered Passive AE Impact Detection Results

© 2013 Metis Design Corporation

IWSHM13 13 of 20

Active Mode Impact Detection Results

- System showed good sensitively to impact damage
 - > 100% detection (36/36) of ~0.5 mm deep dents following AE detection
 - > no false positives indicated (0/36) following non-impact scans
 - > phase coherent scan produced for each AE result
 - Cartesian coordinates distilled for maximum likelihood centroid of scan
- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - > more scattered than AE, but predictions still group relatively close to origin
 - mean error for GW localization ~ 50 mm
 - > no trend observed for results obtained on one side of fastener line vs other
 - some error may be accumulated due to each subsequent dent introducing additional scatterers into structure; while subtracted in algorithm, still redistributes ultrasonic energy through structure in inhomogeneous pattern

Re-Centered Active GW Impact Detection Results

© 2013 Metis Design Corporation

IWSHM13 15 of 20

Active Mode Fastener Detection Results

- System showed excellent sensitively to loose fastener detection
 - > 100% detection (6/6) of hand-tightened fasteners
 - > no false positives indicated (0/36) following non-loosened scans
 - > phase coherent scan produced for each AE result
 - > Cartesian coordinates distilled for maximum likelihood centroid of scan
- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - > more scattered than AE, but predictions still group relatively close to origin
 - mean error for GW localization ~ 5 mm
 - \succ essentially translates to localization within ±1 fastener position

Re-Centered Active GW Fastener Detection Results

© 2013 Metis Design Corporation

Summary

- Paper present results for a controlled experiment investigating the use of an SHM system for hybrid passive/active operation
 - > Aluminum plate with row of fasteners instrumented with a single sensor
 - > 36 impact events using falling mass, AE + GW detection & localization
 - > 36 manually-triggered active scans to check false-positives
 - 6 manually-triggered active scans with loosened fasteners
- Results indicate good sensitivity for both active/passive modes
 - > 100% AE-based ~20 J impact detection, 25 mm mean localization error
 - > 100% GW-based ~0.5 mm dent detection, 50 mm mean localization error
 - > 100% GW-based loose fastener detection, 5 mm mean localization error
 - > no false positives for active or passive modes with appropriate thresholds
- Hybrid beamforming approach provides an efficient & accurate means for impact/damage detection, possible to add DC sensors

@ 2013 Metis Design Corporation

IWSHM13 18 of 20

Technology & Transition Readiness

Naval Applications

Surface Vessels – TRL 7

- 14 sensors installed on USS Independence
- continuously operating since 2/2012
- monitoring weld-line cracks & temperature

Submarines – TRL 5

- underwater testing
- scaled testing planned

Fixed-Wing Aircraft

- Unmanned TRL 6
 - full-span test conducted on Triton wing assembly
 - full-span test conducted on Predator wing spar
- Manned TRL 6/7
 - C-17 empennage tests
 - F-22 lug fatigue tests
 - C-130 hot-spot flight test planned for 2014

Rotorcraft

BlackHawk – TRL 6

- 100+ subcomponent impact/damage tests
- ongoing subassembly testing w/SIK
- tail gearbox spin-stand crack-tracking tests
- CH-53K TRL 5
 - relevant material tests
 - environmental tests

Technical & Business Contact

Metis Design Corporation Seth S. Kessler, Ph.D. President/CEO 617-447-2172 x203 617-308-6743 (cell) www.MetisDesign.com skessler@metisdesign.com

@ 2013 Metis Design Corporation

IWSHM13 20 of 20

