

structural health monitoring multi-functional materials lean enterprise solutions

205 Portland St • Boston, MA 02114 • 617.447.2172 • http://www.metisdesign.com

Conformal Multi-functional Assemblies

- Conformal assemblies for composite & metallic host structures
 - > Central carbon nanotube (CNT) layer is core to these properties
 - Surrounded by electrically insulating layers (film adhesive and/or GFRP)
 - Selective electrodes integrated to steer current flow
- No impact to physical structure, 100 200 μ m & 5 10 g/m²
 - Can be co-cured with composite laminate
 - > Can be installed over composite or metallic skin in secondary process
- Enable multi-functional capabilities: conducting, heating, sensing

@ 2015 Metis Design Corporation

IWSHM 2015 2 of 20

CNT Structural Health Monitoring

- SHM improves reliability, safety & readiness @ reduced costs
 - sensors add weight, power consumption & computational bandwidth
 - > cables add weight, complexity, as well as durability & EMI concerns
 - > scaling SHM for large-area coverage has presented challenges
- Advantages of proposed CNT-based SHM methodology
 - > sensing elements actually improve specific strength/stiffness of structure
 - > conformal electrodes lighter & more durable than cable
 - > simple to scale over large structure, maintains good local resolution

metis design

Sparse Electrode Notch-Cutting Tests (N111-067)

- Simple notch-cut experiment presented at prior IWSHM in 2011
 - > 2400 mm² CNT w/160 mm² damage yields ~25% in resistance increase
 - > same damage in 1 m long strip of same width would yield ~2% change
 - > 10 mm² damage would still be over noise floor
- 2D network resistor model in good agreement with data

4-Point Bent Results Under Load (N111-067)

- Simple 4-pt bend experiment also presented at IWSHM 2011
 - Resistance is proportional to strain for low displacement
 - tensile-side resistance increases due to CNT network being stretched-out
 - compressive-side resistance decreases due to CNT being pushed together
- Permanent resistance increase after 25 mm deflection (>400 N)

Environmental & Mechanical Studies (N111-067)

- To use CNT as sensors in service, need to evaluate durability
 - Environmental effects
 - Mechanical effects
- Enhanced version of basic 4-point setup from prior tests
 - Rather than static load, used Labview-controlled stepper-motor
 - > In-situ monitoring of load, displacement, temp, strain, CNT resistance
 - > 1 Hz cycle rate if collecting data, 10 Hz if no data during cycles
- Same setup used for 3 sets of tests, 3 repetitions for each
 - > Monitor resistance with various electrode materials & coatings
 - > Monitor resistance with various temperature steps
 - Strain (enforced)
 - ➤ Fatigue
 - ➤ Creep

Environmental Testing Results (N111-067)

© 2015 Metis Design Corporation

IWSHM 2015 7 of 20

Compensation for α (temp.) & β (hum.) (N111-067)

IWSHM 2015 8 of 20

Automated 4-Point Test Bending Rig

© 2015 Metis Design Corporation

IWSHM 2015 9 of 20

Enforced Strain Results (N111-067)

Fatigue Test Results (N111-067)

© 2015 Metis Design Corporation

Creep Test Results (N111-067)

@ 2015 Metis Design Corporation

IWSHM 2015 12 of 20

CNT based Continuum Crack Gauge (AF141-065)

- Targeted detection of flaw growth in known location
 - > Addressing fleetwide problems or critical locations
 - > Alternative to traditional crack gauge
 - > Focus on crack growth in metallic parts for fixed-wing aircraft
- Proposed CNT solution
 - Small (5x5 cm) CNT patch with electrodes around perimeter
 - > Ability to detect fatigue crack, estimate length & orientation
 - Non-contact resistance measurements for difficult to access locations

Phase I Study

- > Funded by AFRL, partnered with LMCO JSF
- Calibrated milled-notch results
- Demonstrated fatigue crack growth monitoring
- Demonstrated passive wireless data acquisition

Continuum Crack Gauge Model (AF141-065)

Continuum Crack Gauge Calibration (AF141-065)

© 2015 Metis Design Corporation

IWSHM 2015 15 of 20

Continuum Crack Gauge Experiment (AF141-065)

© 2015 Metis Design Corporation

IWSHM 2015 16 of 20

Passive RFID Proof-of-Concept (AF141-065)

CNT Continuum Crack Gauge Summary

- Use of CNT as sensing method previously explored w/Navy SBIR
 - Showed strong correlation to tensile/compressive strain loads
 - Clear trends observed for impact, notch & overload damage
- Durability of approach was investigated
 - Identified/eliminated sources of drift to improve sensitivity/reliability
 - > Quantified/compensated for effects of temperature & moisture absorption
 - > Explored repeatability under strain, observed no effects of creep & fatigue
- Demonstrated continuum crack gauge w/AFRL SBIR
 - > Simple model in close agreement with experimental results
 - > Could calibrate crack length & orientation from orthogonal electrodes
 - > Grew real fatigue cracks in 3 specimens, accurate crack length predictions
 - Proof-of concept demo measured resistance change with RFID approach

Future Work (AFRL Phase II SBIR)

- Task 1: Sensor Optimization. materials & fabrication procedure selection. Downselect installation (including self-curing)
- Task 2: RFID Hardware Development. Design, fabricate & test send/receive hardware for collecting data and displaying results
- Task 3: Sensor Calibration & Validation. Conduct several couponscale tests to build calibration table for crack size/orientation
- Task 4: Initial Probability of Detection Report. Conduct a first pass PoD assessment for the optimized sensor (MIL-HDBK-1823A)
- Task 5: Durability Assessment. Conduct MIL-STD-810G to determine susceptibility to aircraft environmental conditions
- Task 6: Blind Demonstration. Working with LMCO demonstrate technique blindly on a large F-35 relevant built-up test article

© 2015 Metis Design Corporation

Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation 617-447-2172 x203 • 617-308-6743 (cell) • skessler@metisdesign.com

© 2015 Metis Design Corporation

IWSHM 2015 20 of 20