

Metis Design Corporation | 14 September 2017

structural health monitoring multi-functional materials lean enterprise solutions

205 Portland St • Boston, MA 02114 • 617.447.2172 • http://www.metisdesign.com

AF14-065 Phase II SBIR – Continuum Crack Gauge

- Targeted detection of flaw growth in known location
 - Addressing fleetwide problems or critical locations
 - Alternative to traditional crack gauge
 - Focus on crack growth in metallic parts for fixed-wing aircraft
- Crack detection mechanism
 - > Carbon Nanotube (CNT) assembly to be bonded to structure skin
 - > CNT network electrical resistance changes proportional to crack length
 - > Multiple electrode pairs can be used to detect crack orientation
 - > Completely passive sensor, crack "recorded" even when no power applied

Modeling

- ANSYS 18.1 finite element model of the CNT sensor with a crack
 - > Adjust electrode spacing & width, sheet resistance and crack length
 - 4096 eight node plane230 elements with voltage degrees of freedom
- **Resistance increases as a function of crack length**
- 120r R, were fitted to: 100 $R = R_0 - R_S \frac{4}{\pi} \ln\left(\cos\left(\frac{\pi a}{2W}\right)\right)$ 80 Resistance (Ω) 60 **RO** is resistance without crack: 40 $R_0 = R_S \frac{L}{M}$ 20
 - Equations fits well to results
 - \blacktriangleright Except for W / L \ge 2 small crack lengths comparted to the width $R = R_0 + R_S \frac{\pi a^2}{2 w^2}$

IWSHM 2017 3 of 18

> Equation is approximately given by:

© 2017 Metis Design Corporation

small a/w

metis design

Continuum Crack Gauge Model 1D Validation

© 2017 Metis Design Corporation

IWSHM 2017 4 of 18

Continuum Crack Gauge Model 2D Validation

© 2017 Metis Design Corporation

IWSHM 2017 5 of 18

Sensor Design

- Sensor patches are comprised of several stacked layers
 - > Upper insulation layer (0.001" thick)
 - Film adhesive (0.001" thick)
 - > CNT layer (0.001" thick, "disappears" into adhesive when integrated)
 - Film adhesive (0.001" thick)
 - Lower insulation layer (0.001" thick)
 - Strain gauge epoxy (~0.001" thick)

Measured Resistance Drift over 1 Year

Change in CNT Network Resistance over Time

© 2017 Metis Design Corporation

IWSHM 2017 7 of 18

Measured Resistance Under Enforced Strain

Measured Resistance Under Fatigue Loading

© 2017 Metis Design Corporation

IWSHM 2017 9 of 18

Automated 4-Point Test Bending Rig

- 1" between inner rollers, 8" between outer rollers
- Constant moment between inner rollers, 3000 $\mu\epsilon$ (80% yield)
- Cycles at 1Hz while collecting load, stroke, temp, CNT resistance

© 2017 Metis Design Corporation

IWSHM 2017 10 of 18

Crack Imaging System

© 2017 Metis Design Corporation

IWSHM 2017 11 of 18

Continuum Crack Gauge Performance Assessment

© 2017 Metis Design Corporation

IWSHM 2017 12 of 18

Change in Resistance VS Fatigue Cycles

© 2017 Metis Design Corporation

IWSHM 2017 13 of 18

Change in Resistance VS Fatigue Crack Length

© 2017 Metis Design Corporation

IWSHM 2017 14 of 18

Comparison of Prediction to Measured Crack

IWSHM 2017 15 of 18

CNT Continuum Crack Gauge Summary

- Developed passive means for measuring fatigue crack growth
- CNT-based sensing element changes resistance with crack growth
- Excellent correlation between theory/model & calibrated cuts
- Good correlation between predicted & measured crack growth
- Method is simple and does not require a power source
- Provides a path to wireless sensing (see future work)

Future Research

- Probability of Detection Testing
 - More 4-pt bending specimens being manufactured for testing
 - > Also testing at higher/lower temperatures & strain levels for variability
 - > Analysis by Prof. Bill Meeker @ Iowa State U to assess statistical reliability

RFID Integration

- > Co-developing hardware for wireless measurements w/Analog Devices
- > Will test with calibrated CNT cuts to assess accuracy
- > Will test with RFID configuration on fatigue specimen

• Blind Testing

- Will demonstrate integrated RFID sensor on blind specimen(s)
- Testing with AFRL @ WPAFB

Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation 617-447-2172 x203 • 617-308-6743 (cell) • skessler@metisdesign.com

© 2017 Metis Design Corporation

IWSHM 2017 18 of 18