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Program Goals
• Motivations for SHM within NRO OSL

– hidden damage possible during manufacture and handling of spacecraft
– lack of access to make quantitative measurements
– detect/map extent of damage before and/or on the launch pad
– facilitate launch/no-launch decisions

• Sensors/actuator optimization
– increase reliable, robustness, signal strength of sensor/actuator
– more efficient sensing schemes (architecture)
– damage evaluation algorithms in MATLAB
– large set of simple test results to compare, confirm, and tune

• Three areas of research
– sensor/actuator development (MIT led)
– testing (joint venture)
– analysis and system design (MDC led)
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Lamb Wave Methods
• Form of elastic perturbation that propagates in a solid medium

– actuation parameters determined from governing equations
– excite Ao wave for long travel distances and to minimize clutter

• Damage can be identified in several ways
– group velocity approximately ∝ (E/ρ)1/2, damage slows down waves
– reflected wave from damage can be used to determine locations

• Research uses piezoelectric actuators/sensors to detect energy 
present in transmitted and reflected waves, builds off prior research

Piezoceramic Actuator

Piezoceramic Sensors
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Sensors Material Analysis

• Use 3-1 piezoelectric coupling properties to output an open 
circuit voltage in response to strain wave

• Desirable attributes

– maximize                    where d31 is the 3-1 piezoelectric “strain” 
coefficient and k31 is the 3-1 coupling coefficient

– minimum stiffness to maximize strain of wave passing though it
– length of (1 + n / 2)*λ where λ is the wavelength and n = 0,1,2,3,…
– capacitance such that 1 MΩ (oscilloscope impedance)  appears as an 

open circuit to the sensor
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Sensors Material Comparison

• Chart compares 
figure of merit for 
available PZT

• Separate analysis 
performed for PVDF

• Candidate materials 
which were selected 
to test broad range
– EBL#5
– EBL#1
– EBL#2
– EBL#23
– EBL#3

Material k31 d31 g31 Y11
D | (k31)2/(d31 (1 - (k31)2) |

(-) (p m / V) (mV m / N) (GPa) V / (mm µε)
PZT-7A -0.300 -60 -16.2 104 1.65
EBL#5 -0.300 -60 -16 103 1.65
EBL#1 -0.360 -127 -10.7 106 1.17
EBL#7 -0.330 -107 -10.9 104 1.14
EBL#4 -0.310 -95 -10.5 110 1.12
PZT-8 -0.350 -127 -12.2 89 1.10
PZT-4 -0.340 -125 -10.6 91 1.05
EBL#9 -0.340 -135 -10.5 92 0.97
PZT-7D -0.300 -112 -9.6 94 0.88
PZT-5R -0.385 -200 -11.5 75 0.87
EBL#2 -0.360 -173 -11.5 76 0.86
PZT-5B -0.380 -210 -10.1 79 0.80
PZT-5A -0.343 -177 -11.1 71 0.75
EBL#23 -0.440 -320 -9 79 0.75
PZT-5J -0.375 -230 -9.8 73 0.71
EBL#3 -0.380 -262 -8.6 75 0.64
PZT-5H -0.375 -264 -8.9 69 0.62
EBL#6 -0.370 -260 -9.8 57 0.61
PZT-5M -0.370 -270 -7.6 78 0.59
EBL#25 -0.300 -179 -11 49 0.55
PZT-5K -0.380 -323 -6.9 73 0.52

PT2/PC6 -0.030 -3 -2.1 135 0.30
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Actuator Material Analysis

• Uses 3-1 piezoelectric coupling properties to output a strain 
wave in response to voltage

• Desirable attributes
– maximize the strain per volt induced in the structure, P=2πfCV2

– maximize                                      where eP is the planar piezoelectric 
“stress” coefficient, hP and Q are the thickness and stiffness of the 
actuator, and hS and cP are the thickness and stiffness of the structure

– minimize the power delivered by the function generator by minimzing
the admittance

where kP is the planar coupling coefficient and εP the planar permittivity
– resonant actuators also considered, but low frequencies required large 

dimensions (3-4” for 25 kHz) and had narrow range (250 Hz PZT-5A)
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Actuator Material Comparison

• Chart compares 
figure of merit for 
available PZT

• Separate analysis 
performed for 
resonant actuators

• Candidate materials 
which were selected 
to test broad range
– EBL#23 (disk)
– EBL#3
– EBL#2
– EBL#1 (disk)
– EBL#5

Material kP s11
E s12

E σP
ε33

P e31
P

(-) (p m2 / N) (p m2 / N) (-) (nF/m) (N / m V)
EBL#23 0.750 15.7 -4.9 0.31 14.7 -29.6
PZT-5K 0.650 16.0 -5.1 0.32 29.6 -29.5
PZT-5M 0.630 15.0 -4.7 0.31 21.5 -26.1
EBL#3 0.640 15.6 -4.6 0.29 18.0 -23.9
PZT-5H 0.635 16.9 -5.1 0.30 17.4 -22.4
PZT-5J 0.630 16.0 -4.7 0.29 14.1 -20.3
PZT-5B 0.640 14.7 -4.3 0.29 12.3 -20.3
EBL#6 0.630 20.3 -6.3 0.31 14.7 -18.6
EBL#25 0.630 22.3 -12.2 0.55 9.6 -17.7
EBL#9 0.600 12.3 -4.4 0.36 8.2 -17.1
PZT-5R 0.630 15.7 -4.0 0.25 10.9 -17.1
EBL#2 0.620 15.1 -4.9 0.33 9.4 -17.0
PZT-5A 0.600 16.1 -5.6 0.35 9.7 -16.8
EBL#1 0.600 10.8 -3.0 0.28 7.4 -16.3
PZT-4 0.580 12.4 -3.9 0.31 7.6 -14.7
EBL#7 0.560 10.8 -3.3 0.31 6.7 -14.3
PZT-7D 0.510 11.8 -3.6 0.31 8.4 -13.7
EBL#4 0.520 10.1 -2.9 0.29 6.8 -13.2
PZT-8 0.520 12.8 -1.2 0.09 6.8 -11.0
EBL#5 0.520 10.6 -3.6 0.33 2.7 -8.5
PZT-7A 0.510 10.6 -3.3 0.31 2.6 -8.2

BT 0.260 7.8 -2.6 0.33 9.1 -8.1
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Sensors/Actuator Material Testing
• Sensors bonded to circular Al plate

– EBL#5 (PZT-7A) - 0.5x0.25x.01", 1.0x0.25x.01"
– EBL#23 (PZT-5K) - 0.5x0.25x.01"  
– EBL#3 (PZT-5H) - 0.5x0.25x.01", 0.5x0.5x.01"
– EBL#2 (PZT-5A) - 0.5x0.25x.01", 0.5x0.25x.02"
– EBL#1 (PZT-4) - 0.5x0.25x.01“
– DT2-052K/L PVDF
– SDT1-028K PVDF

• Actuator disk in center
– EBL#23 (PZT-5K) 0.5"(diameter)x0.01"
– EBL#1 (PZT-4) 0.5"(diameter)x0.01"

• Tests performed
– actuated from 1 kHz to 250 kHz
– 20 V peak to peak
– duplicates tested for each on separate plates
– tests also performed in reverse
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Sensors Material Results
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• PZT-5A, PZT-5H, PZT-5J, PZT-5K all comparable maximums
• PZT-5A and PZT-5J have highest means and minimums
• PZT-5A selected because of bandwidths of maximum peaks
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Actuator Material Results

0

5

10

15

20

25

30

35

40

PZT4 PZT5A PZT5A
thick

PZT5H PZT5H
wide

PZT5J PZT7A PZT5K DT2-
052K/L

SDT1-
028K

Am
pl

itu
de

 o
f s

en
se

d 
si

gn
al

 (m
V)

Max
Avg
Min

• PZT-5H and PZT-5K have highest amplitudes, PZT-5A close
• Overall averages were lower due to poor center sensor
• PZT-5A selected due to better actuation temperature stability
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Temperature Stability

• PZT-5A has the best temperature stability of PZT materials
• PZT-5H has worst stability of PZT materials
• PZT-5K has comparable thermal properties to PZT-5H
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Electrical/Mechanical Connections
• Electrical connections

– provide an electrical path to the underside of the piezoelectric wafers
– minimize in-plane stiffness E*t to maximize actuation (consider tearing)
– reasonable through-thickness conductivity (resistance less than 1Ω)

• Mechanical connections
– adhere piezoelectric wafer assembly to the structure
– low application temperature, removable without damaging the structure
– uniform thickness to reduce variability in surface mounting
– must minimize G/t to maximum actuation

• Brass alloy 260 chosen for bottom electrode 
– 1 mil. thick shim stock used for conductor
– 81% less stiff than copper shim used previously

• 3M 9703 electrically conductive double-sided tape chosen
– used to adhere to brass and structure, non-conductive version available
– 2 mil. thick chosen for adhesive
– smoother and more repeatable than Ag epoxy
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Piezoelectric Wafer 
Dimensions and Waveforms

• Actuator and sensor lengths 
– chosen to be 0.5” based upon equations for 15 kHz actuation
– could be either length or diameter

• Actuator and sensor configuration
– concentric disk/ring chosen for sensor/actuator, common ground
– experiments demonstrated highest amplitudes with this setup
– yields less electrical noise than “self-sensing” concepts

• Optimal actuation waveform 
– 15kHz chosen based on previous work
– 3.5 sine waves w/Hanning window, will also collect data for 5.5 waves

Sent Signal
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Actuator/Sensor Schematic

Sensor

Actuator

Electrically conductive tape

Brass shim stock

Electrically conductive tape

Complete sensor/actuator
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Data Reduction Procedure

• Procedure developed within Matlab to reduce data
– bandpass filter designed to remove low frequency drift and high 

frequency electrical noise without affecting signal shape
– perform wavelet decomposition using Morlet mother wavelet to 

breakdown signal energy distribution between 7.5-50 kHz
– plot integrated voltage over time yielding total received energy to 

determine presence and severity of damage
– plot normalized wavelet energy at driving frequency of 15 kHz to 

determine time of arrival thus damage location
– plot normalized energy received for across wavelet spectrum to 

determine type of damage
– need 4 sets of plots: transmitted & reflected for 2 locations

• Need more consistent signals from new experiments to 
refine algorithms for automatic determination of damage
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Experimental Results –
Controls I
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• Highly reproducible signal between same set of actuators 
and sensors tested several times
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Experimental Results –
Controls II
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• Signal shape remains unchanged when propagating in 
reverse direction, other metrics remain similar
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Experimental Results –
Controls III
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• Similar response across several different pairs of equally 
spaced actuators/sensors on same plate
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Experimental Results –
Controls IV
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• Similar response between pairs of actuators/sensors 
located on several undamaged plates 
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Experimental Results –
Delamination
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• Delaminated signal is time-lagged, and has slightly lower 
energy content.  Frequency bandwidth remains similar
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Experimental Results –
Microcracks
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• Some matrix cracking caused a slight time delay, less tail 
energy and a small shift to a higher frequency bandwidth
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Conclusions

• Overall setup has increased signal strength nearly a factor 
of 4 over the previous research configuration

• New decomposition algorithm appears to work well with 
new data for transmitted wave, reduces subjectivity

• Undamaged response is very reliable/reproducible
• Controlled damage does not have significant effect on 

most parameters, however voltage signal is lagged
• Reflected signal not yielding much information thus far

– need to perform further analysis, maybe look at other frequencies
– could affect ability to pinpoint damage location

• Will continue to collect more data to refine algorithm
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Future Recommended Research
• Collect data on several plate specimens to refine algorithms
• Collect data for beam specimens with various core E and t’s
• Continue studies on other potential detection methods 

– acoustic emission
– eddy current

• Research focusing on other SHM components
– wireless data acquisition and signal propagation
– powering devices

• Increase complexity of tests
– test on built up section 
– test in service environment (natural, mechanical, electrical noise)
– use multiple sensing methods at once to increase reliability
– integrate multiple SHM components
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