Ten Years of Progress in Lean Product Development

Dr. Hugh McManus
Associate Director,
Lean Advancement Initiative Educational Network
10-15 Years Ago: Questions

- Does Lean apply to Product Development, and its primary processes, Engineering?
- How can we define the “Value” of Product Development?
- How can processes with variation and iteration be mapped and controlled?
- How can uncertainties be handled and even exploited?
- Can “creative” processes be “standardized”?
- Can Engineers practice process discipline?
- Many more….
10-15 Years Ago: Bad Ideas

- Lean is for factories, not “creative” work
- Every product is different and its development is special
- Development should be done “right the first time” and not iterate or follow varying paths
- Analysis and Testing are “Inspection” and are therefore Pure Waste
- Engineers should be made to follow work instructions like factory workers
- Many more....
A great deal of progress
The Problem: Waste in Product Development

- Most tasks are idle most of the time
- When they are in-process, much of the work is NVA
- The 12% VA time is NOT the problem

Survey of aerospace PD process time (2000)

62% job idle 38% job active:

- 12% value-added activities
- 11% necessary NVA activities
- 15% pure waste activities

77% of time is PURE WASTE
Root Causes of Time Wastes

• Resources not available
 • Not in balance with needs of task
 • Unevenness in availability: multitasking, firefighting..

• Institutional/organizational boundaries
 • Unsynchronized operations
 • Slow handoffs

• Legacy processes
 • Over-processing
 • Unnecessary reviews and approvals
Wasteful Processes = Targets for Lean

• Static *Muda* wastes
 • the 7 (or 8 or 10 or 30) wastes applied to the *information* used by engineering/product development processes
 • Information “rots” at around 11% per month (!)

• Even more important to PD processes:
 • *Muri* – Overburden of people or equipment
 • *Mura* – Unevenness or instability in operations or outputs

Answers to some questions:
• *Lean should be useful for reducing PD wastes*
• *Lean should allow engineers to do more of what they want to do!*
Five Lean Fundamentals

• Specify *value*: Value is defined by customer in terms of specific products and services

• Identify the *value stream*: Map out all actions, processes and functions necessary for transforming inputs to outputs to identify and eliminate waste

• Make value *flow* continuously: Having eliminated waste, make remaining value-creating steps “flow”

• Let customers *pull* value: Customer’s “pull” cascades throughout the value stream, enabling just-in-time satisfaction of customer needs

• Pursue *perfection*: Pursue continuous process of improvement striving for perfection
Value

• PD creates value by specifying products that users need, buyers can afford, and firms can produce profitably (all reasonably quickly and efficiently)
 • Multiple stakeholders with multiple definitions of value

• All of these change as needs, contexts, and technologies change in unpredictable ways
 • Reducing risk and uncertainty key to creating value

• Not a solved (or solvable) problem
 • Value thinking still key
 • Tools to understand the issues and tradeoffs help
Value-Based Decision Making and Tradespace Exploration

- Exciting new tools for understanding value tradeoffs in complex systems with multiple stakeholders and changing environments

- Link to rapid preliminary design methods for a powerful “front end”
No easy answers - Best practices in an evolving field

• For complex systems, environments, and stakeholder sets, consider new methods
 http://seari.mit.edu

• For dominant users, incorporate their (changing) needs
 • Voice of the customer studies
 • Integrated product team organization (including customers)

• Even for simple cases, consider value of
 • Reduction in risk and uncertainty
 • Speed to market
 • Flexibility to change product as market evolves
Value Stream Mapping
Applied to Product Development

- Same basic techniques apply
- Flows are knowledge and information flows rather than physical products
- Process steps may overlap or involve planned iterations
- Value added steps add or transform knowledge, or reduce uncertainty (role of analysis steps)
- Quantifies key parameters for each activity (cycle time, cost, quality defects, inventory, etc.)
- 2005 document does NOT represent current knowledge; update in progress
Some minor difficulties

- Need expanded symbol set to handle functional silos, overlapping tasks, overarching reviews, interdependent tasks, etc.
- Need expanded analysis methods to understand capacities under unpredictable rework or intentional iteration

PDVSM works, is useful

Difficulties to be addressed in PDVSM 2.0
Impediments to *Flow* in PD

- Overburden (Muri) due to understaffing, poor allocation of work
- Instability (Mura) due to unpredictability of development work, iterations.
- Lack of work structure (standardization, prioritization, synchronization) and perceived resistance to imposing it
- Organizational and information system barriers to information flow
Intuitive and non-intuitive cases

- “Simple” overburden
 - Find actual capacity accounting for iteration and rework
 - Obtain resources (which may take a while)
 - Adjust workload and/or control “batch sizes” to synchronize

- Variability/instability the harder problem
 - A perfectly balanced, “flow” system will behave very badly if there is instability in either input or process!
Spreadsheet Simulation
Balanced flow system *but* performance modeled by a six-sided die
Queue Time

Based on the equation for queue cycle time,

\[
\text{Time_in_Queue} = \text{Activity_Time} \times \left(\frac{\text{Utilization}}{1 - \text{Utilization}} \right) \times \left(\frac{CV_a^2 + CV_p^2}{2} \right)
\]

- \(CV_a\) is input variation
 - which we may not control
- \(CV_p\) is process variation
 - which we want to minimize
- Utilization rate is Demand/Capacity
 - Note to be "efficient" this should be 1…
Controlling Variability

- Heroic reductions in variability required if utilization is high
- This is the motivation behind the 6-Sigma approach
Controlling Utilization (overburden)

- For any variation level, some level of utilization makes queue time explode
- This is *muri* and *mura* in action
- Often, slight easing makes a dramatic difference
Adapting to variation

- Standardized system for adjusting staffing, resources, or schedule to absorb variation
 - Reserve capacity: for critical projects
 - Flexible staffing: “2-1/2 jobs”
 - Working to a (weekly) pace: “pseudo-Takt”

- Not a solved problem, but plenty of ideas…
Digital tools need flow too

- IT needs to link analytical tools in ways that allow information to flow
Various meanings of *Pull*

- Pull means the organization responds, as a whole, to the needs of the stakeholders

- **Customer pull:**
 - Rapid development, inside the customer’s decision cycle
 - Platformed or mass-customized architectures
 - Concurrent Engineering – delay decisions until customer needs are better known

- **Project pull:**
 - Customization of standard process based on project VS

- **Process pull**
 - Lean Enablers for Systems Engineering tool
Customer Pull

• Note that understanding value, clearing the value steam of waste, and enabling flow are prerequisites!
• Once the process performs, additional tools can enhance the ability of the process to respond to customer needs
• Many TPDS ideas (e.g. concurrent engineering) fall into this category
Project Pull

• Conflict between process standardization and processes flexibility and optimization
• Solved at one LAI member company by allowing project to pull value from standards
• Project goals (value) and VSM of project (as planned) used to customize engineering standards to meet the needs of the specific program
• Done as part of a planning event that goes through the value and value stream steps first
Discipline Pull

- (Aerospace) Systems Engineering having difficulty addressing cost overruns
- Application of Lean Principles to Systems Engineering by pulling from existing body of work
- INCOSE best product 2009
- Shingo research prize 2010
Perfection: Building a Continuous Improvement Culture

- Much of this is learning by doing
- Training and participation plays a role
- Best practices: All employees have familiarization training, participate in event(s) with JIT tool training
- Training should be adapted to local environment/culture
What works?

• LAI / McKinsey study
 • 300 subjects, 28 companies
 • what PD practices correlated with project success?
• High performing companies consistently did better on a variety of metrics
• High performing companies tended to employ a lot of advanced PD practices
• No “silver bullet” practice, but a few correlated particularly strongly with success
The Main Differentiators between Top and Bottom Performers

1. High level of upfront project preparation
 - Scoping of project
 - Staffing of project
 - Handling of “Fuzzy Front End”

2. Focus on project team
 - Emphasize on Project Organization over Line Organization
 - Strong project leadership

3. Keep eyes on the ball
 - Exploration of customer needs at each step of the project
 - Close customer integration, constant feedback loops

These LEAN characteristics correlate with business success

List from Dr. Josef Oehmen
Where to start?

- LAI study of lean practices. Difficulty, impact, interdependencies considered.

<table>
<thead>
<tr>
<th>Process Standardization</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Levelling</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Specialist Career Path</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Strong Project Manager</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Responsibility-based Planning and Control</td>
<td>35</td>
<td>34</td>
<td>33,36</td>
<td></td>
</tr>
<tr>
<td>Simultaneous Engineering</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Rapid Prototyping, Simulation and Testing</td>
<td>30</td>
<td>29</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Supplier Integration</td>
<td>26</td>
<td>25</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Product Variety Management</td>
<td>21</td>
<td>22,24,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set-based Engineering</td>
<td>30</td>
<td>37</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>Cross-project Knowledge Transfer</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

- Process Standardization, Workload leveling suggested as first steps.
Wrapup

• Lean Does Apply to PD/Engineering
• There is no one silver-bullet intervention
• The Value, Value Stream, Flow, Pull, Perfection model works (roughly in order)
• Tools (which are available and plentiful) must be gathered, selected and customized base on your projects’ needs
• There are still areas (e.g. multi-stakeholder value) where research is ongoing

For most of you, there IS enough knowledge to begin your lean journey
Acknowledgements

• Dr. Eric Rebentisch and Dr. Josef Oehman of MIT’s Lean Advancement Initiative, who did much of the work

• Dr. Anja Schulze, Mareike Heinzen and Philipp Schmitt of ETH, for making this event possible

• The MIT LAI Educational Network, for partially sponsoring this work

QUESTIONS?