
Arbitrary-Order Sensitivity Analysis in Wave Propagation
Problems Using Hypercomplex Spectral Finite Element Method

Juan D. Navarro,∗ Juan C. Velasquez-Gonzalez,† and Mauricio Aristizabal‡

The University of Texas at San Antonio, San Antonio, Texas 78249

Gregory Jarmer§ and Seth S. Kessler¶

Metis Design Corporation, Boston, Massachusetts 02114

and

Arturo Montoya,** Harry R. Millwater,†† and David Restrepo‡‡

The University of Texas at San Antonio, San Antonio, Texas 78249

https://doi.org/10.2514/1.J062834

Many modern structural health monitoring (SHM) systems use piezoelectric transducers to induce and measure

guided waves propagating in structures for structural damage detection. To increase the detection capabilities

of SHM systems, gradient-based optimization of sensor placement is frequently necessary. However, available

numerical differentiation methods for mechanical wave propagation problems suffer from truncation and

subtraction errors and are difficult to extend to high-order sensitivities. This paper addresses these issues by

introducing an approach to obtain highly accurate numerical sensitivities of arbitrary order in mechanical wave

propagation problems. The hypercomplex time-domain spectral finite element method (ZSFEM) couples the

hypercomplex Taylor series expansion method with the time-domain spectral finite element method. We show how

ZSFEM can be implemented within the commercial finite element package ABAQUS/Explicit. For verification, we

compared the numerical and analytical results of the displacement and its sensitivities with respect to mechanical

parameters, geometry, and boundary conditions for a rod subjected to a sudden, distributed axial load. First- and

second-order sensitivities were obtained with normalized root mean square deviations below 4 × 10−3. Mesh

convergence analyses revealed that p-refinement offered better convergence rates than h-refinement for the

outputs and their sensitivities. Also, the sensitivities obtained with ZSFEM were compared with finite differences

showing higher accuracy and step-size independence (e.g., no iteration is needed to determine the step size that

minimizes the error). For simplicity, ZSFEMwas presented only for one-dimensional truss elements, but the method

is general and can be applied to other elements.

I. Introduction

T HE assessment of the structural integrity in engineered sys-

tems is commonly known as nondestructive evaluation (NDE).

Recent developments in NDE systems have investigated the integra-

tion of permanent sensors within the structure to monitor its integrity

automatically, reducing the need for human intervention. This sub-

discipline has been called structural health monitoring (SHM). SHM

aims to detect the existence of structural damages, locate the physical

position of the damage, and quantify the severity of the damage to

facilitate the prognosis of the remaining service life of the structure

[1]. Among the different types of SHM systems, guided wave-based

SHM systems have gained great interest for several reasons: i) the

transducers required are usually lightweight and easy to integrate

into the structure; ii) large areas can be scanned with a relatively

small number of transducers; and iii) microscale damages can be

detected as the transducers are capable of measuring high-frequency

excitations while reducing the sensitivity to low-frequency ambient
noise [2–5].
The position of the sensors used in SHM systems can profoundly

affect its capacity to detect structural damage. As such, the place-
ment of the transducers in a structure is typically selected based
on Bayesian and gradient-based optimization algorithms in digital
twins to maximize the detection information while minimizing the
number of transducers required [6–11]. Among the optimization
algorithms traditionally used for sensor placement, one can find the
conjugate gradient, least-squares regression using bidiagonaliza-
tion and QR decomposition, and the Broyden–Fletcher–Goldfarb–
Shanno (BFGS). All of these algorithms use the information from
sensitivities to guide the optimization process [12,13]. Because the
objective function used in optimizing sensor placement is expensive
to evaluate, highly accurate sensitivities are desired to minimize the
computational cost of the optimization process [14]. Moreover,
access to highly accurate sensitivities leads to improved guided
wave-based SHM systems by maximizing their sensitivity to
microscale damage, different types of imperfections, noise in mea-
surements, and changes in environmental conditions [15–17].
Therefore, advances in differentiation techniques in the computa-
tional simulation of mechanical wave propagation problems are
required to accelerate and facilitate optimization processes neces-
sary in SHM.
Mechanical wave propagation problems are typically simulated

using explicit time integration algorithms [2,18]. Different methods
can be used to calculate the sensitivities required to guide optimiza-
tion processes within the framework of explicit solvers [14]. The
finite difference method (FDM) is the most traditional approach
to computing numerical sensitivities thanks to the simplicity of its
implementation [19,20]. However, the accuracy of FDM is prone to
truncation and subtraction error [21], and determining the optimal
perturbation stepmagnitude that minimizes both errors is a nontrivial
problem that requires multiple iterations [22–24]. This fundamental
obstacle becomes more relevant when computing higher-order
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sensitivities [14]. The adjoint variable method (AVM) has also been
used to compute numerical sensitivities in mechanical wave propa-
gation problems. However, AVM requires the development of an
adjoint system of equations, leading to significant increase in com-
putational cost to compute the required sensitivities [12]. Also, AVM
is known for its difficulties to extend to higher-order sensitivities
[25]. Recently, algorithmic differentiation (AD) has been gaining
popularity; however, AD requires access to source code and code
conversion packages specific to the programming language being
used [26–28]. In addition, higher-order sensitivities are prohibitively
expensive to compute with AD [29].
An alternative method to obtain highly accurate sensitivities

was introduced by Squire and Trapp [30], based on using complex
variables to approximate the sensitivities of real functions. Like
FDM, this method adds a small perturbation to the function of
interest; however, the perturbation takes place in an imaginary di-
rection instead of a real axis. Then, the sensitivity is obtained by
truncating an infinite Taylor series expansion of the complex func-
tion. This method is known as the complex Taylor series expansion
(CTSE). CTSE is not susceptible to the subtractive errors that are
characteristic of FDM because there is no subtraction of similar
quantities [31]. Nonetheless, CTSE is only valid for first-order
sensitivities. Lantoine et al. [32] addressed this issue by including
multicomplex numbers, allowing one to compute arbitrary-order sen-
sitivities with high accuracy. This extension of CTSE is known as the
multicomplex Taylor series expansion due to the inclusion of multi-
ple imaginary axes. In parallel, Fike and Alonso [33] introduced the
use of dual [34] and hyper-dual numbers to obtain calculations of
second-order sensitivitieswithmachine precision. Thesemethods are
known as the hypercomplex Taylor series expansion (ZTSE). Sensi-
tivities computed with multicomplex numbers require using a small
perturbation step (i.e., 10−10) to reduce the truncation error below the
machine precision, causing numerical issues in linear algebra oper-
ations of matrices containing quantities that are orders of magnitude
different. In contrast, with hyper-dual numbers the computation of
sensitivities has machine precision accuracy regardless on the selec-
tion of the perturbation step. Moreover, complex algebra requires
higher number of calculations than its dual algebra counterpart,
resulting in a performance improvement when dual algebra is used
[35,36]. For these reasons, in this work we use hyper-dual numbers
with unitary perturbation steps.
ZTSE as differentiation method is agnostic to the solution

method used to model problem of interest. Specifically, in wave
propagation problems both analytical [37,38] and numerical [39]
methods can be benefited from leveraging ZTSE for sensitivity
analysis. Recently, ZTSE was coupled with the finite element
method (FEM) giving rise to the hypercomplex finite element
method (ZFEM) [40,41]. ZFEM inherits FEM’s flexibility to model
complex geometrical configurations while preserving high accu-
racy.Moreover, with ZFEM it is possible to compute arbitrary-order
sensitivities with high accuracy in a single FEM run. The tradeoffs
are that ZFEM is intrusive as it requires the implementation of
hypercomplex operations, and the size of the system of equations
grows with the order of the sensitivities. Recently, ZTSE and ZFEM
have been used to perform sensitivity analysis in a large variety
of disciplines, such as computational fluid dynamics [42–45],
pseudospectral algorithms [46], aeroelasticity [47], chemical reac-
tions [48], gradient-based optimization [49], boundary elements
[50], structural dynamics [51–55], phononics [56], nonlinear analy-
ses [57,58], frictional contact [59], thermoelasticity [60–63],
fatigue [64], plasticity [65], creep [66], bioheat transfer [67],
residual stress [68], and fracture mechanics [69]. Despite the numer-
ous advantages of ZFEM, its application in time-domain mechanical
wave propagation problems is still absent.
FEM is known to be an effective numerical tool for the solution

of boundary value problems on arbitrary and complex domains.
However, the standard formulation for FEM is not appropriate for
solving mechanical wave propagation problems [70] as the detection
of small damage features requires high-frequency excitation signals.
Thus, the precise computational representation of these problems
using FEM requires very dense spatial and time discretization, result-

ing in high computational costs [71]. Spectral finite element method
(SFEM) has been proposed to address this issue [72–75]. Although
the formulation of SFEM is very similar to that of FEM; SFEM
uses an interpolating polynomial of high degree based on the
Gauss–Lobatto–Legendre (GLL) quadrature, and it places the nodes
and the integration points at the same positions. High-order shape
functions and nodal quadrature make the simulation of time domain
wave propagation problems accurate and fast compared to standard
FEM [75–78].
In this work, we introduce a new method to obtain highly accu-

rate, arbitrary-order sensitivities in the simulation of time domain
mechanical wave propagation problems by coupling ZTSEwith the
time-domain spectral finite element method (SFEM) herein called
the time-domain hypercomplex time-domain spectral finite element
method (ZSFEM). ZSFEM can accurately model mechanical wave
propagation phenomena and simultaneously provide arbitrary-
order sensitivities without dependency on the selection of perturba-
tion steps. The outline for the rest of this work is as follows: Sec. II
provides the background information about computing arbitrary-
order sensitivities with ZTSE. Section III presents the new meth-
odology and the implementation aspects of ZSFEM. Then, in
Sec. IV, an application study based on the sensitivity analysis of a
rod subjected to harmonic axial load is presented. Finally, the
conclusions and future work are presented in Sec. V.

II. Arbitrary-Order Differentiation with the
Hypercomplex Taylor Series Expansion

ZTSE is a numerical method that uses dual numbers to compute
sensitivities with high accuracy [33]. Dual numbers [hereafter rep-
resented with an asterisk superscript �⋅��] are a subset of the set of
hypercomplex numbers [79]. ZTSE obtains the sensitivity of a func-
tion f�x� by adding a perturbation h to the variable of interest x along
a nonreal axis ϵ1, becoming x� � x� hϵ1, and evaluating the Taylor
series expansion of the function at the perturbed position:

f�x� hϵ1� � f�x� � hϵ1
1!

df�x�
dx

� �hϵ1�2
2!

d2f�x�
dx2

� �hϵ1�3
3!

d3f�x�
dx3

� �hϵ1�4
4!

d4f�x�
dx4

� · · · (1)

Considering the properties of dual numbers, ϵ21 � 0 and ϵ1 ≠ 0, the
higher-order terms in the right-hand side of Eq. (1) can be eliminated
[80]. Therefore, the first-order sensitivity can be exactly computed by
taking the dual imaginary part of both sides of Eq. (1) as

df�x�
dx

� Imϵ1 �f�x� hϵ1��
h

(2)

where Imϵ1 �⋅� denotes the nonreal part of the dual number corre-

sponding to the axis ϵ1. Note that the Taylor series expansion in
Eq. (1) was not truncated; hence, ZTSE is exact and insensitive to
the selection of the perturbation steph. In general, a unitary step size
h � 1 is used for simplicity and omitted in the expressions pre-
sented hereafter.
ZTSE can compute higher-order sensitivities by introducing addi-

tional nonreal axes using hyper-dual numbers. Hyper-dual numbers
are the generalization of dual numbers to higher dimensions [81]. To
compute n th-order sensitivities with ZTSE, it is necessary to use
hyper-dual numbers with 2n − 1 nonreal axes. For instance, to obtain
second-order sensitivities it is necessary to use three nonreal axes
(e.g., ϵ1, ϵ2, and ϵ12), where the first two are independent and the third
one is a mixed axis. In general, the highest-order sensitivity to be
computed determines the number of independent nonreal axes per-
turbed, whichmeans that to compute then th-order sensitivity of f�x�
will require a hyper-dual number with unitary perturbations along n
independent nonreal axes f�x� ϵ1 � ϵ2� · · · �ϵn�. Thereafter, the
general expression for arbitrary-order sensitivities with ZTSE is as
follows:
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∂nf�x�
∂xn

� Imϵ1 : : : n f x�
n

j�1

ϵj (3)

In the case of mixed sensitivities, each variable is perturbed along

different nonreal axes. For instance, an th-ordermixed sensitivity of a

function f�x1; x2; : : : ; xm� with m input parameters will require a

hyper-dual number with unitary perturbations along different n non-

real axes, as shown in Eq. (4) [82].

∂nf�x1; x2;: : : ; xm�
∂xb11 ∂xb22 : : :∂xbmm

� Imϵ12 : : : n f x1 �
b1

j1�1

ϵj1 ; x2

�
b1�b2

j2�b1�1

ϵj2 ;: : : ; xm �
b1�b2� · · ·�bm

jm�bm−1�1

ϵjm (4)

where m
j�1 bj � n. An important advantage of ZTSE is given by

the possibility of computing the real-valued analysis and its corre-

sponding sensitivities simultaneously in a single analysis, includ-

ing lower-order (e.g., < n) sensitivities when computing n th-order

sensitivities. For instance, when the second-order mixed sensiti-

vity ∂2f�x1; x2�∕∂x1∂x2 is computed, the first-order sensitivities

∂f�x1; x2�∕∂x1 and ∂f�x1; x2�∕∂x2 and the real-valued result are

obtained in the same analysis, as shown below:

f�x; y� � Real�f�x1 � ϵ1; x2 � ϵ2��
∂f�x1; x2�

∂x1
� Imϵ1 �f�x1 � ϵ1; x2 � ϵ2��

∂f�x1; x2�
∂x2

� Imϵ2 �f�x1 � ϵ1; x2 � ϵ2��

∂2f�x1; x2�
∂x1∂x2

� Imϵ12 �f�x1 � ϵ1; x2 � ϵ2�� (5)

where the Taylor series expansion of f�x1 � ϵ1; x2 � ϵ2� is given by

f�x1 � ϵ1; x2 � ϵ2� � f�x1; x2� �
ϵ1
1!

∂f�x1; x2�
∂x1

� ϵ2
1!

∂f�x1; x2�
∂x2

� ϵ12
1!

∂2f�x1; x2�
∂x1∂x2

(6)

Note that the first term on the right-hand side corresponds to the

evaluation of the function f�x1; x2� stored in the real part of the

solution; the second and the third terms correspond to the first-order

sensitivities, each one stored in independent nonreal axes ϵ1 and ϵ2,
respectively; and the fourth term corresponds to the second-order

sensitivity stored in the mixed nonreal axis ϵ12.
There are two alternatives to operate hyper-dual variables in tradi-

tional programming languages that do not support hypercomplex

algebras: one alternative is to use the Cauchy–Riemann (CR) matrix

notation of hyper-dual numbers (see the Appendix for more infor-

mation about CR notation). This matrix notation allows one to

replace hyper-dual numbers with matrices containing real-valued

numbers, and the hyper-dual operations are replaced by matrix

operations [69,80,83–88]. Although CR flexibility allows one to

implement hyper-dual algebra in real-valued programming lan-

guages, the incurred computational cost is significant asCR increases

the size of the variables by a factor of 4n to compute an nth-order
sensitivity. This results in a significant increase inmemory consump-

tion and the number of operations. The other alternative is to use

external libraries that support operations involving hyper-dual num-

bers. External libraries use operator overloading to operate hyper-

dual numbers and only increase the size of the variables by a factor of

2n. In this study the FORTRAN external library MultiZ was used as

presented in the work of Aguirre-Mesa et al. [83].

III. Hypercomplex Spectral Finite Element Method

The ZSFEM can model mechanical wave propagation phenomena

and simultaneously provide arbitrary-order sensitivities with high

accuracy of themodel outputswith respect to the inputs, e.g.,mechani-

cal parameters, geometry, and boundary conditions. An overview of

ZSFEM is presented in Fig. 1, where the inputs of the method

correspond to the highest order of sensitivity to compute, n, and the

set of input parameters describing the wave propagation model,

α � fα1;α2; : : : g. The method requires a single-time code modifica-

tion in step 0 corresponding to setting all the input parameters into their

hyper-dual representation. From this point onward, the method is

divided into preprocessing, processing, and postprocessing. Prepro-

cessing covers step 1 and corresponds to setting the perturbation to

the variables whose sensitivities will be calculated. Processing covers

steps 2 and3and corresponds to thedomaindiscretization usingSFEM

and the solution of the equations of motion in the time domain; these

steps were implemented in Abaqus/Explicit as a VUEL subroutine.

Postprocessing covers step 4 and corresponds to the extraction of the

model outputs and the sensitivity information. Each step of the meth-

odology is described below:
0) Step zero consists of representing each input parameter as

hyper-dual variables α� � fα�1 ; α�2 ; : : : g. This step is a one-time
modification that is performed by declaring the input variables as
hyper-dual variables.
1) In the first step, unitary perturbations are added to the nonreal

axes of the variables of interest. The maximum order of derivative to
compute n determines the number of independent nonreal axes to be
perturbed. Adding perturbations to the same parameter along differ-

ent independent nonreal axes α�i � αRei � ϵ1� · · · �ϵn will result
in the computation of sensitivities with respect to the perturbed

Fig. 1 Methodology flowchart for sensitivity analysis in wave propaga-
tion problems using ZSFEM.
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parameter. On the other hand, perturbing multiple parameters along

different independent nonreal axes α�i � αRei � ϵi will result in the
computation of mixed sensitivities.
2) In the second step of the method, the elements’ mass �M�� and

stiffness �K��matrices are computed using traditional SFEM formu-
lations (see [70,73,75]). As such, the discretization and integration
algorithms traditionally used in SFEM are unchanged; however, as
the variables are hyper-dual, algebraic operations are conducted
using the MultiZ library.
The elements’ damping matrix is computed using Rayleigh propor-
tional damping as a linear combination of the mass and stiffness
matrices:

�C� � Cα�M� � Cβ�K� (7)

whereCα andCβ are the Rayleigh proportional damping coefficients

of the mass and stiffness matrices, respectively. To compute sensi-
tivities with respect these parameters, we define the hyper-dual
damping matrix based on the real part of the mass and stiffness
matrices and the hyper-dual Rayleigh proportional damping coeffi-
cients:

�C�� � C�
α �MRe� � C�

β �KRe� (8)

3) The wave propagation phenomenon is modeled by solving the
time-domain equation of motion:

�M��fA�g � �C��fV�g � �K��fU�g � fF�g (9)

where �M��, �C��, and �K�� are the mass, damping, and stiffness
matrices, and fA�g, fV�g, fU�g, and fF�g are the nodal accelerations,
velocities, displacements, and external forces, respectively. In the
context of transient dynamic simulations, widely used commercial
FEM packages such as ABAQUS/Explicit and ANSYS/LS-Dyna
employ the central difference method (CDM) as time-stepping algo-
rithm [71,89,90]. CDM is a second-order-accurate explicit method
that approximates the time derivatives of the equation of motion. It
advances in time by solving Eq. (9) to obtain the nodal accelerations:

fA�g � �M��−1ffF�g − �C��fV�g − �K��fU�gg (10)

CDM is known to be conditionally stable. To ensure the stability of
CDM, a widely employed approach is to impose the Courant–Frie-
drichs–Lewy (CFL) condition. CFL provides a constraint on the time
step size, preventing the growth of numerical instabilities arising
from time discretization errors. In the context of explicit time inte-
gration schemes, the CFL condition states that the time step size must
be chosen small enough so that thewave propagates only a fraction of
the grid size during each time-step. This ensures that the numerical
solution remains stable and accurately captures the dynamics of the
system. The CFL equation for determining the appropriate time
increment can be expressed as

Δt � CFL
dmin

c
(11)

where dmin is the shortest distance between any nodes in the mesh of

elements and c � E∕ρ is thewave velocity. From steps 0–2, all the

variables involved in Eq. (10) are hyper-dual of order n. Therefore, to
take advantage of existing open source or commercial CDM solvers,
it is necessary to consider some methodological modifications.
Following Millwater et al. [91,92], any hyper-dual element can be
represented as a traditional SFEM element with additional sets of
nodes that carry the information of the nonreal axes. For example,
Fig. 2 shows a schematic of a 2D element used in SFEM compared
with a ZSFEM element for computing second-order sensitivities. In
this case, ZSFEM requires three additional sets of nodes for each real
node corresponding to the nonreal axes ϵ1, ϵ2, and ϵ12.
Following the representation for ZSFEM introduced by Millwater
et al. [91,92], Eq. (10) is rewritten using CR notation. (For reference,

the CR form to represent any hyper-dual number is presented in the
Appendix.) It is important to highlight that MultiZ is used to operate
all the hyper-dual input parametersα� to compute �M��, �K��, and �K��
in step 3 and that CR notation is only used as a resource to solve the
equation of motion in real-valued solvers (e.g., Abaqus, Ansys, and
others). The resulting system of equations (SOEs) has the following
form:

fAReg
fAϵ1g
..
.

fAϵ12 : : : n−1g
fAϵ12 : : : ng

�

�MRe� 0 : : : 0 0

�Mϵ1 � �MRe� : : : 0 0

..

. ..
. . .

. ..
. ..

.

�Mϵ12 : : : n−1 � 0 : : : �MRe� 0

�Mϵ12 : : : n � �Mϵ12 : : : n−1 � : : : �Mϵ1 � �MRe�

−1

×

fFReg
fFϵ1g
..
.

fFϵ12 : : : n−1g
fFϵ12 : : : ng

−

�CRe� 0 : : : 0 0

�Cϵ1 � �CRe� : : : 0 0

..

. ..
. . .

. ..
. ..

.

�Cϵ12 : : : n−1 � 0 : : : �CRe� 0

�Cϵ12 : : : n � �Cϵ12 : : : n−1 � : : : �Cϵ1 � �CRe�

×

fVReg
fVϵ1g
..
.

fVϵ12 : : : n−1g
fVϵ12 : : : ng

−

�KRe� 0 : : : 0 0

�Kϵ1 � �KRe� : : : 0 0

..

. ..
. . .

. ..
. ..

.

�Kϵ12 : : : n−1 � 0 : : : �KRe� 0

�Kϵ12 : : : n � �Kϵ12 : : : n−1 � : : : �Kϵ1 � �KRe�

×

fUReg
fUϵ1g
..
.

fUϵ12 : : : n−1g
fUϵ12 : : : ng

(12)

To note, all the variables in Eq. (12) are real. The superscripts �⋅�Re,
�⋅�ϵ1 , �⋅�ϵn−1 , and �⋅�ϵn denote the real part of the hypercomplex
variable and the nonreal parts corresponding to the ϵ1, ϵ12 : : : n−1,
and ϵ12 : : : n axes, respectively. However, in this representation of the
equation of motion, the mass matrix is not diagonal and evaluating its
inverse in a CDM scheme becomes computationally expensive. To
address this point,wepresent a procedure that uncouples the systemof
equations by solving each equation individually. In the case of the first
equation, only the real part of thevariables is required, and the solution
for the acceleration is found:

fAReg � �MRe�−1�fFReg − �CRe�fVReg − �KRe�fUReg� (13)

Fig. 2 Comparison of 2D elements used in SFEM and ZSFEM when

computing second-order sensitivities.
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Equation (13) requires inverting �MRe�, which by construction with
SFEM is diagonal [77,93,94]. This characteristic feature of SFEM is
preserved in other types of elements, such as 2D plane and 3D brick
elements with arbitrary shapes. Then, the solution of the real part
of the acceleration is used to compute the second row of the SOE
in Eq. (12), which corresponds to the first nonreal part of the
acceleration:

fAϵ1g � �MRe�−1�fFϵ1g − �Cϵ1 �fVReg − �CRe�fVϵ1g
− �Kϵ1 �fUReg − �KRe�fUϵ1g − �Mϵ1 �fAReg� (14)

In general, the solution of the nth nonreal part of the acceleration only
depends on the information of the real part of the acceleration and all
the lower order (< n) nonreal parts of the acceleration:

fAϵ12 : : : ng � �MRe�−1�fFϵ12 : : : ng− �Cϵ12 : : : n �fVReg− �Cϵ12 : : : n−1 �fVϵ1g− · · ·

− �Cϵ1 �fVϵ12 : : : n−1g− �CRe�fVϵ12 : : : ng− �Kϵ12 : : : n �fUReg
− �Kϵ12 : : : n−1 �fUϵ1g− · · · −�Kϵ1 �fUϵ12 : : : n−1g− �KRe�fUϵ12 : : : ng
− �Mϵ12 : : : n �fAReg− �Mϵ12 : : :n−1 �fAϵ1g− · · · −�Mϵ1 �fAϵ12 : : : n−1g� (15)

The CDM advances in time and finds the time-dependent sol-
ution vectors (fU�g; fV�g; fA�g; fF�g). Here, any real-only CDM
solver can be used; i.e., no hypercomplex-valued CDM solver is
required.
4) Lastly, in the fourth step, the real and nonreal components

of the solution vectors (fUg; fVg; fAg; fFg) are separated. The
real components correspond to the solution of the nominal
problem, and the information of the sensitivities is contained
in the nonreal axes of the solution vectors and postprocessed
using Eqs. (3) and (4). For simplicity, we show the case of the
nodal displacements, but the expressions are also valid for the
remaining solution vectors (fVg; fAg; fFg). Assume that variable
αi is perturbed along ϵi:
First order:

∂fU�g
∂α1

� Imϵ1 �fU�g� � fUϵ1g; ∂fU
�g

∂α2
� Imϵ2 �fU�g�

� fUϵ2g; : : : ; ∂fU
�g

∂αn
� Imϵn �fU�g� � fUϵng

Second order:

∂2fU�g
∂α1∂α2

� Imϵ12 �fU�g� � fUϵ12g; : : : ;∂
2fU�g
∂α1∂αn

� Imϵ1n �fU�g� � fUϵ1ng

Third order:

∂3fU�g
∂α1∂α2∂α3

� Imϵ123 �fU�g� � fUϵ123g;: : : ; ∂3fU�g
∂α1∂α2∂αn

� Imϵ12n �fU�g� � fUϵ12ng
..
.

nth order:

∂nfU�g
n
j�1 ∂αj

� Imϵ12 : : : n �fU�g� � fUϵ12 : : : ng (16)

A. Step-by-Step Application Example

To illustrate the new methodology for computing arbitrary-order

sensitivities inmechanical wave propagation problems using ZSFEM,

we present a step-by-step analysis of a single linear spectral truss

element with Young’s modulus E, density ρ, cross-sectional area
Acs, Rayleigh proportional parameters Cα and Cβ, and nodal coordi-

nates χ1 and χ2. The objective in this example is to compute the mixed

second-order sensitivity of the nodal displacements with respect to

the Young’s modulus E and the density ρ, as shown in Fig. 3a.
Follow the steps listed in the flowchart shown in Fig. 1:
0) For the case of mixed second-order sensitivities, all the input

parameters are represented as hyper-dual variables with order 2 and 3
nonreal axes ϵ1, ϵ2 and ϵ12:

α� � fE�; ρ�; A�
cs; χ

�
1 ; χ

�
2 ; C

�
α; C

�
βg (17)

1) Unitary perturbations are added to the variables of interest E
and ρ along two independent nonreal axes ϵ1 and ϵ2, respectively, as
shown in Fig. 3:

E� � ERe � ϵ1

ρ� � ρRe � ϵ2 (18)

2) Figure 3b shows a schematic representation for a bi-dual truss
with a unitary perturbation on the Young’s modulus along ϵ1 and
another unitary perturbation on the density along ϵ2. Note also that
the nonreal values of the remaining input parameters (i.e., nodal
coordinates χ1 and χ2, cross-sectional areaAcs, and Rayleigh propor-
tional damping parameters Cα and Cβ) are set to zero. The element’s

mass, stiffness, and damping matrices are computed as follows:

�M�� ≈
p�1

ι�1

wι�ψ�ξι��Tρ�A�
CS�ψ�ξι�� det��J�χ�; ξι���

≈
Acs�ρRe � ϵ2��χ2 − χ1�

2

1 0

0 1

�K�� ≈
p�1

ι�1

wι�B�χ�; ξι��TE�A�
CS�B�χ�; ξι�� det��J�χ�; ξι���

≈
Acs�ERe � ϵ1�

χ2 − χ1

1 −1

−1 1

�C�� ≈ C�
α �MRe� � C�

β �KRe� ≈ Acsc
Re
α ρRe�χ2 − χ1�

2

1 0

0 1

� AcsE
ReCRe

β

χ2 − χ1

1 −1

−1 1
(19)

Fig. 3 a) Schematic for second-order sensitivity computation in linear truss element using ZSFEM. b) Bi-dual linear truss element with perturbations on
Young’s modulus and density.
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where ξι are the nodal coordinates of the ιth node in the isoparametric
space and J is the jacobian that maps the nodal coordinate from the
physical space (χ�) into the isoparametric space.
3) The SOE is reorganized in order to solve the equation ofmotion.

For reference, the matrices for this example are presented in the
Appendix. The solution of the real part [the first line of the SOE
shown in Eq. (12)] corresponds to

ARe
1

ARe
2

� �MRe�−1
FRe
1

FRe
2

− �CRe�
VRe
1

VRe
2

− �KRe�
URe

1

URe
2

(20)

Then, the first nonreal part of the acceleration vector [the second line
of the SOE shown in Eq. (12)] is computed using Eq. (14). In this
application example, �Mϵ1 � and �Cϵ1 � are zero, yielding to the follow-
ing expression:

Aϵ1
1

Aϵ1
2

� �MRe�−1
Fϵ1
1

Fϵ1
2

− �Cϵ1 �
VRe

1

VRe
2

− �CRe�
Vϵ1
1

Vϵ1
2

− �Kϵ1 �
URe

1

URe
2

− �KRe�
Uϵ1

1

Uϵ1
2

− �Mϵ1 �
ARe
1

ARe
2

(21)

The second nonreal part of the accelerationvector [the third line of the
SOE shown in Eq. (12)] is also computed using Eq. (14). In this
application example, �Kϵ1 � is zero, but since �Mϵ2 � is not zero, the real
part of the acceleration vector [computed in Eq. (20)] is used as
follows:

Aϵ2
1

Aϵ2
2

� �MRe�−1
Fϵ2
1

Fϵ2
2

− �Cϵ2 �
VRe

1

VRe
2

− �CRe�
Vϵ2
1

Vϵ2
2

− �Kϵ2 � URe
1

U2

− �KRe�
Uϵ2

1

Uϵ2
2

− �Mϵ2 �
ARe
1

ARe
2

(22)

Finally, the second-order mixed nonreal part of the acceleration
vector is computed using the real part [Eq. (20)] and the first-order
nonreal parts [Eqs. (21) and (22)] of the acceleration vector, as shown
next:

Aϵ12
1

Aϵ12
2

� �MRe�−1
Fϵ12
1

Fϵ12
2

− �Cϵ12 �
VRe
1

VRe
2

− �Cϵ2 �
Vϵ1

1

Vϵ1
2

− �Cϵ1 �
Vϵ2
1

Vϵ2
2

− �CRe�
Vϵ12
1

Vϵ12
2

− �Kϵ12 �
URe

1

URe
2

− �Kϵ2 �
Uϵ1

1

Uϵ1
2

− �Kϵ1 �
Uϵ2

1

Uϵ2
2

− �KRe�
Uϵ12

1

Uϵ12
2

− �Mϵ12 �
ARe
1

ARe
2

− �Mϵ2 �
Aϵ1
1

Aϵ1
2

− �Mϵ1 �
Aϵ2
1

Aϵ2
2

(23)

The matrices in Eqs. (20–23) are included in the Appendix. More-
over, these matrices are filled with real-valued numbers and the only
requirement is to invert diagonal matrices, allowing one to use any
CDM solver to update the solution vectors (fU�g; fV�g; fA�g; fF�g)
at each time step.
4) The real and nonreal axes are separated, and the sensitivities are

postprocessed. Here, we show the expressions for the nodal displace-
ments but the procedure is the same for the remaining solution
vectors:

fUg � Real�fU�g� � fURe
1 ; Ue

2g
∂fUg
∂E

� Imϵ1 �fU�g� � fUϵ1
1 ; U

ϵ1
2 g

∂fUg
∂ρ

� Imϵ2 �fU�g� � fUϵ2
1 ; U

ϵ2
2 g

∂2fU�g
∂E∂ρ

� Imϵ12 �fU�g� � fUϵ12
1 ; Uϵ12

2 g (24)

IV. Verification

To verify the ZSFEM, a one-dimensional truss fixed at both ends
and subjected to a sudden axial uniformly distributed load at time
t � 0 is studied. Figure 4 displays a schematic of the problem.
The parameters for the model are as follows: Young’s modulus

E � 200 GPa, density ρ � 7800 kg∕m3, cross-sectional area Acs �
5 mm2, length of the truss L � 100 mm, sudden axial distributed
load amplitude q � 2 N∕mm, and Rayleigh’s mass proportional
damping parameter cα � 0.
The analytical solution for the steady-state displacement response

is given by the following expression [95]:

U�x; t� � 4qL2

π3EAcs

∞

j�1;3;5;: : :

1

j3
sin

jπx

L
1 − cos

jπct

L
(25)

A convergence analysis was performed over the first- and second-
order analytical sensitivities with respect the Young’s modulus. This
was done to identify the correct number of terms in the summation
necessary to reach stable results. Figure 5 shows the results of this
convergence analysis. The results indicate that 1001 terms yield
stable results for the real part and the first- and second-order sensi-
tivities. Hereafter, the analytical solution will be calculated using
1001 terms as the reference solution.

A. Time-Refinement Analysis

A refinement analysis was performed to study the stability of the
time discretization used in the CDM. The accuracy between the
numerical and the analytical results was analyzed by computing the
normalized root-mean-squared deviation [NRMSD; see Eq. (28)].
The analysis includes the real-valued results, the first-order and
second-order normalized sensitivities of the displacement with
respect to the Young’s modulus [see Eqs. (26) and (27) for the
nondimensionalization rule].

Sxy �
∂x
∂y

× jyj (26)

Sxyz �
∂2x
∂y∂z

× jyzj (27)

NRMSD �
�1∕N� N

j �yAnalyticalj − yNumerical
j �2

max�yAnalytical� −min�yAnalytical� (28)

Note that 100 spectral truss elements with lengthhe � 1 mm, with
order of interpolation functions p � 19, were used to minimize
inaccuracies produced by the mesh discretization. The results were
obtained at the midpoint of the truss. Figure 6 shows the NRMSD
results for the real displacement and its first- and second-order

Fig. 4 One-dimensional truss with sudden distributed axial load.
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sensitivities with respect to the Young’s modulus. These results show
that, once the CFL stability condition is met, further reduction in the
time step used in the simulations has little influence on the accuracy
of the results; for this reason, the CFL was set to 0.75 for subsequent
analyses. This value of CFL provides a good balance of accuracy and
computational runtime [89].

B. Mesh Convergence Analysis

A mesh convergence analysis was performed to study the effect
that the size of the spectral elements (h-refinement) and the order of
the interpolation functions used (p-refinement) have on the accuracy
of both the real-value solution and its nondimensional sensitivities.
The mesh convergence analysis was performed for elements with
varying lengths he between 1 and 50 mm using interpolation func-
tions with varying orders p from 1 to 19.
Figures 7 and 8 show the results of the mesh convergence analysis.

In Fig. 7, we show the accuracy of the results as a function of the
inverse of the elements’ size 1∕he for elements with different order of

interpolation functions p. Conversely, in Fig. 8, we show the accu-

racy of the results as a function of the interpolation functions p for

elements with different size 1∕he. The convergence rate for both h-
and p-refinements is shown in each figure as a gray triangle (1.682,

1.026, and 0.35 for the h-refinement and 2.932, 1.964, and 0.802

for the p-refinement of the displacement and its first- and second-

order sensitivities, respectively). The convergence rates indicate that

increasing the order of the interpolation functions (p-refinement)

results in a better convergence rate than refining the size of the

elements (h-refinement). This trend holds for first- and second-order

sensitivities. However, it is noted that both convergence rates

decrease as the order of the sensitivity grows. Previous works using

ZFEM have reported a similar result, where, as the order of sensi-

tivity increases, the error also tends to increase. This behavior can

be attributed to the fact that higher-order sensitivities depend on

lower-order sensitivities and the real part of the solution [56].

From themesh convergence analysis in Figs. 7 and 8, it is observed

that several combinations ofmesh size �he� and order of interpolation

Fig. 5 a) Convergence analysis of the analytical solution. b) First-order and c) second-order sensitivities with respect to the Young’s modulus at time

t � 2 × 10−4 s and position x � L∕2 mm.

Fig. 6 Time discretization stability analysis: a) accuracy and b) runtime.

Fig. 7 The h-refinement for the real part (a) of the displacement, and the first-order (b) and the second-order (c) sensitivity.
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functions (p) produce the same accuracy (NRMSD). To investigate

this, the isocurves that pass through the point at 1∕he � p � 1 are

overlaid in Fig. 9a. The isocurves of the NRMSD values for the

displacement and its first- and second-order sensitivities with respect

the Young’s modulus are represented with the continuous blue,

discontinuous red line, and discontinuous black line, respectively.

Figure 9b shows the runtime behavior for these isocurves recovered

as reported by ABAQUS in the status file (*.sta) as “Wallclock time”

using one core in an Intel Xeon Gold 6248 CPU at 2.50 GHz and

376 GB of RAM. Figure 9c shows the number of active degrees of

freedom. Two additional markers are included in Fig. 9: the magenta

triangle represents the behavior when using 100 linear (p � 1)
elements with length he � 1 mm, and the green star represents

the behavior when using 2 elements with p � 14 and length

he � 50 mm. Even though both points yield the same accuracy for

the real-valued displacement, we see that both combinations of

parameters required similar runtimes with a significant reduction in

the number of active degrees of freedom. This trend is preserved for

the first- and second-order sensitivity, showing that p-refinement

should be favored over h-refinement.

C. Sensitivity Analysis

Analytical and numerical results obtained with ZSFEM are com-

pared for the displacement and its first- and second-order sensitivities

evaluated at the center of the truss. The five variables of interest for

this sensitivity analysis are the Young’s modulusE, the density ρ, the
cross-sectional area Acs, the length of the truss L, and the amplitude

of the applied load q. For the numerical results, we used 100 spectral

truss elements with length he � 1 mm and interpolation functions of

order p � 19, corresponding to the most refined values evaluated in

the mesh convergence analysis. These results are compared against

the analytical solution in Eq. (25) and the sensitivities obtained from

the analytical solution using the symbolic algebra package from

MATLAB. The NRMSD [see Eq. (28)] was used as a measure of
error. Figure 10 shows the results for the displacement and its
first-order sensitivities. Excellent agreement was found for the dis-

placement with an NRMSD value of 4 × 10−6 and the first-order

sensitivities with a maximum NRMSD value of 4 × 10−3.
Second-order sensitivities and mixed sensitivities we are also

verified (see Fig. 11). The analysis includes sensitivities of the
displacement at the center of the truss with respect to a mechanical
parameter (the Young’s modulus), a geometric parameter (the length
of the truss), and a boundary condition (the amplitude of the applied
load). The excellent agreement is preserved with maximumNRMSD
values of 10−2 for second-order sensitivities.

D. Comparison with the Finite Differences Method

The finite differences method (FDM) is the most traditional
method to obtain numerical sensitivities due to its simplicity. For
this reason, in this section we compare the performance and accuracy
of ZSFEM and FDM. For this comparison, a central difference
schemewith second-order accuracywas used, as detailed in Eqs. (29)
and (30) for the first- and second-order sensitivities of the displace-
ment with respect an input parameter α, where the term h is the
magnitude of the perturbation step.

∂U�α�
∂α

� U�α� h� − U�α − h�
2h

�O�h2� (29)

∂2U�α�
∂α2

� U�α� h� − 2U�α� �U�α − h�
h2

�O�h2� (30)

Table 1 presents the runtimes for both methods, which have been
normalized by the runtime of a single real-valued simulation. The
computational overhead observed in our method can be attributed to
the following factors:

Fig. 9 Isocurves of NRMSD through 1∕he � p � 1 as function of p. a) Equivalent inverse of elements’ size 1∕he, b) computational runtime, and
c) number of active degrees of freedom.

Fig. 8 The p-refinement for the real part (a) of the displacement, and the first-order (b) and the second-order (c) sensitivity.
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i) ZSFEM allows for the simultaneous computation of higher-
order sensitivities, including all lower-order sensitivities, in a single
run. In contrast, FDM requires multiple reruns of the simulation to
compute a single sensitivity at a specific order. This fundamental
difference in approach leads to a higher computational cost for FDM.
ii) To compute sensitivities with ZSFEM, we rely on external

libraries that handle algebraic operations using hyper-dual numbers.

This is necessary because traditional programming languages do not
natively support this type of algebra.As a result, operator overloading
is required, which can lead to a reduction in performance compared to
specialized implementations. However, this tradeoff enables the
accurate computation of sensitivities with ZSFEM.

Furthermore, it is worth highlighting that FDM is highly sensitive

to the selection of the perturbation step size h due to truncation and

Fig. 11 Comparison of numerical and analytical second-order sensitivities of the displacement.

Fig. 10 Comparison of numerical and analytical results for the displacement at the center of the truss and first-order sensitivities.
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subtraction round-off errors. Finding the ideal perturbation step that

maximizes the accuracy of FDM requires multiple iterations, adding

significant computational overhead. Also, the ideal perturbation step

is problem-dependent and cannot be generalized, making it challeng-

ing to determine in practice. The runtimes reported in Table 1 assume

that the ideal perturbation step is known and only a single iteration

is necessary for FDM, which in most cases is far from reality.

A convergence analysis over the perturbation step size h was

performed to compare the accuracy of FDM and ZSFEM. The

accuracy was measured using the NRMSD between numerical and

analytical results. Figure 12 shows the error convergence for the

displacement and its first- and second-order sensitivities with respect

the Young’s modulus. Note that the accuracy obtained with FDM

varies several orders of magnitude as a function of the perturbation

step magnitude used, reaching a minimum value when both trunca-

tion and cancellation errors are minimized, h � 10−3 for first-order

andh � 10−4 for second order. In contrast, the accuracy of ZSFEM is

shown to be independent of the perturbation step magnitude and

always superior to the best accuracy reached with FDM. It is also

important to remark here that as the higher-order sensitivities are

computed using the results of the lower-order sensitivities, the error
propagates, and therefore the error increases with the order of the
sensitivities
Although the analytical solution in Eq. (25) does not consider the

contribution of damping, we highlight that with ZSFEM it is possible
to obtain the sensitivities of the displacement with respect each of
the Rayleigh’s damping parameters. The first-order sensitivity of the
displacement with respect to Cα was computed using ZSFEM and
FDM [see Eq. (29)]. The comparison of both results is shown in

Fig. 13 using Cα � Cβ � 10−10. Excellent agreement between both

results was obtained with an NRMSD value of 3 × 10−4.

V. Conclusions

In this paper, the hypercomplex Taylor series expansion (ZTSE)
differentiation theory is coupled with the time-domain spectral
finite elements method (SFEM), yielding the hypercomplex spec-
tral finite elements method (ZSFEM). This methodology enables
the calculation of highly accurate arbitrary-order sensitivities with
respect to mechanical parameters, geometry, and boundary condi-
tions in mechanical wave propagation problems. Although ZSFEM
takes advantage of hypercomplex algebra to obtain sensitivities, the
method does not require hypercomplex-variable solvers. Instead,
the equation of motion is solved using the CR notation of hyper-
complex numbers, and operations involving hypercomplex varia-
bles are carried out with external libraries. This transformation
allows to implement ZSFEM in any real-valued solver facilitating
the implementation of the new method within commercial finite
element software (e.g., Abaqus).
A test case with a known analytical solution was used to quantify

the accuracy of ZSFEM. Excellent agreement was found between
analytical and numerical sensitivities with a maximum NRMSD of

10−2. Also, mesh-convergence analyses were performed as a func-
tion of the order of the interpolation functions p (p-refinement)
and the size he of the elements (h-refinement), revealing that p-
refinement offers better convergence rates than h-refinement. This
trend was consistent in the real-valued analysis and in the computa-
tion of first- and second-order sensitivities. Subsequently, ZSFEM
was compared against the FDM, revealing that ZSFEM is capable of
achieving better accuracy than FDM in less computational runtime.
Moreover, the accuracy of ZSFEMwas proven to be insensitive to the
selection of perturbation step size. This feature removes the need of
iterating to find the accurate step size to minimize computing errors,
which is a characteristic feature of FDM. Although we believe that
the same trend will hold in problems incorporating other types
of elements (e.g., 2D plane elements, 3D brick elements, Shell
elements), further investigation is required.
We demonstrated that using hypercomplex algebra for sensitivity

analysis in wave propagation problems did not require modifications
to the formulation of existing SFEM elements. The framework
presented in this work can be applied to other element formulations
and discretization methods, such as the boundary elements method
and the more recent C1-continuous time-domain SFEM [96–98].
These implementations will be considered in future research.
Although the development of ZSFEM was presented using Truss

elements, ZSFEM is general and can be applied to continuum and
shell elements. This characteristic feature is of high importance as it
increases the impact of the proposed methodology and enables its
implementation in problems of different fields, such as mechanical
wave propagation, SHM, nondestructive evaluation, acoustics, struc-
tural dynamics, strain-dependent analysis, high-velocity impact,
drop testing, seismic analysis, metal rolling, and energy dissipation.
Furthermore, access to highly accurate sensitivities of arbitrary-order
provided by ZSFEM is advantageous because it enables a better
understanding of the effect that deviations from modeled design
conditions can have on the dynamic behavior of a structure. And
it also promotes new developments in sensitivity analysis, uncer-
tainty quantification, optimization, error analysis, stability analysis,
and computational model-assisted decision making. We posit that
ZSFEMwill constitute a fundamental development in awide number

Fig. 13 Comparison of sensitivity of the displacementwith respect to the
Rayleigh’s damping parameter Cα.

Fig. 12 Comparison of normalized root-mean-squared deviation for
first- and second-order sensitivities obtained with ZSFEM and FDM.

Table 1 Runtime comparison
required by FDM and ZSFEM to
compute first- and second-order

sensitivities

Method SUE SU
E2

ZSFEM ×1.46 ×1.74
FDM ×2.00 ×3.00
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of fields that require modeling of transient dynamic phenomena while
simultaneously providing highly accurate sensitivity information.

Appendix A: Cauchy–Riemann Notation

Hypercomplex variables and their operations are not supported in
most numerical packages.However, it is possible to take advantage of
the hypercomplex algebra isomorphism to represent both multicom-
plex and hyper-dual numbers as a matrix completely filled with real
numbers. This representation of hypercomplex numbers is known as
the Cauchy–Riemann (CR) matrix form and replaces the operations
between hypercomplex numbers [80] with matrix functions and
arithmetic operations. For example, hyper-dual numbers of order η
are defined as the addition of two hyper-dual numbers of order η − 1,

Dη � fz�∕z� � a�1 � a�2ϵη; a
�
1 ; a

�
2 ∈ Dη−1g, and considering that

D0 ≡ R, the CR matrix form of z� follows the next recursive rule:

�z�� �
�a�1 � 0

�a�1 � �a�1 �
; �z�� ∈ R2η×2η ; �a�1 �; �a�2 � ∈ R2η−1×2η−1 (A1)

In the case of dual numbers, D1 � fz�∕z� � a�1 � a�2ϵ1;a
�
1 ;

a�2 ∈ D0g. Thus, the CR matrix form is

�z�� �
a1 0

a2 a1
; �z�� ∈ R2×2; a1; a2 ∈ R (A2)

This time, a bi-dual number is considered, D2 � fz�∕z� �
a�1 � a�2ϵ2; a

�
1 ; a

�
2 ∈ D1g, where a�1 � b1 � b2ϵ1 and a�2 � b3�

b4ϵ1. Thereafter, z
� � b1 � b2ϵ1 � b3ϵ2 � b4ϵ12, and the corre-

sponding CR representation is

�z�� �
�a�1 � 0

�a�2 � �a�1 �
�

b1 0 0 0

b2 b1 0 0

b3 0 b1 0

b4 b3 b2 b1

;

�z�� ∈ R4×4; b1; b2; b3; b4 ∈ R (A3)

Appendix B: Matrices of Step-by-Step Application
Example

The matrices of the step-by-step application example are defined
next:

�M��≈Acs�ρRe � ϵ2��χ2 − χ1�
2

1 0

0 1

�K��≈Acs�ERe � ϵ1�
χ2 − χ1

1 −1

−1 1

�C��≈Acsc
Re
α ρRe�χ2 − χ1�

2

1 0

0 1
� AcsE

ReCRe
β

χ2 − χ1

1 −1

−1 1
(B1)

The real components correspond to

�MRe�≈Acsρ
Re�χ2 − χ1�

2

1 0

0 1

�KRe�≈AcsE
Re

χ2 − χ1

1 −1

−1 1

�CRe�≈Acsc
Re
α ρRe�χ2 − χ1�

2

1 0

0 1
�AcsE

ReCRe
β

χ2 − χ1

1 −1

−1 1
(B2)

The nonreal components correspond to

�Mϵ1 � ≈
0 0

0 0

�Mϵ2 � ≈ Acs�χ2 − χ1�
2

1 0

0 1

�Kϵ2 � ≈
0 0

0 0

�Cϵ2 � ≈
0 0

0 0

�Mϵ12 � ≈
0 0

0 0

�Kϵ12 � ≈
0 0

0 0

�Cϵ12 � ≈
0 0

0 0
(B3)
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