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ABSTRACT 

This paper updates continued development on a study to generate Probability of 
detection (PoD) and Receiver Operating Characteristic (ROC) curves for a guided wave 
(GW) Structural Health Monitoring (SHM) system.  PoD curves are used to access a 
detector’s performance as a function of damage size or equivalently the backscattered 
Energy to Noise Ratio (ENR).  ROC curves present statistical representations of the 
reliability of the method for detecting certain size flaws versus their Probability of False 
Alarms (PFA). To a large extent, generating meaningful versions of these curves 
involves multiple repetitions of the same experiments while injecting as much realistic 
variability as possible.  This paper examines the impact of a few key variables such as 
averaging and distance to flaw and how they can be applied to model assisted PoD. 

INTRODUCTION  

SHM systems are permanently integrated within a structure to efficiently detect, 
locate, and characterize damage. This process involves an information extraction 
procedure where measurements are processed to determine if damage is present. For 
GW methods, inspection consists of interrogating the structure with an input excitation 
and then analyzing the resulting scattered wave field using a signal processing method 
(detector). In this paper, a single GW mode phased array detector is considered.  

Before an SHM systems can be fielding in military or commercial applications, its 
performance as detector needs to be characterized. While no standards presently exist 
that are specifically written for characterizing SHM performance, best practice suggests 
that MIL-HDBK-1823 “Non-Destructive Evaluation System Reliability Assessment”, 
can be leveraged due to the close relationship between many NDE and SHM. The key 
figure of merit from HDBK-1823A is the PoD(a) curve, which is the probability of 
detection as a function of damage size (a). Resulting from the PoD(a) curve is the 90 95a
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value, which is the damage size that can be detected with a 90% probability of detection 
and a 95% confidence bound. An important implication for SHM in establishing a 
PoD(a) curve is the required number of independent test specimens. For SHM 
applications, testing of many specimens is typically impractical due to the expense 
associated with the permanent nature of SHM sensor installation. Model assisted 
probability of detection (MAPOD) then becomes vital to establishing PoD curves for 
SHM applications. This includes the incorporation of propagation, scattering, and 
operational/environmental models with experimental data to properly establish PoD. 
Initial sources of variability include but are not limited to temperature, strain, humidity, 
installation location, bond quality, and sensor element degradation. 

A previous paper had presented a preliminary PoD curve established using 
simulated cracks on a metallic plate structure for a guided wave detector. This paper 
builds on previous work by examining how key variables can be calibrated then applied 
using MAPOD strategies to determine the effect on PoD. Specifically, the effect of 
various numbers of averages and distance between the sensor and damage are explored. 

ACTIVE ULTRASONIC GUIDED WAVE INSPECTION 

Pulse echo detection 

A pulse echo strategy detects damage by interrogating the structure with a waveform 
and detecting the scattered/echo from damage. The pulse echo detection problem is 
mathematically modeled in discrete time as: 
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Here KH is the Kth damage state/size with echo amplitude KA , frequency 0f , phase , 
arrival time 0n and noise [ ].w n . Assuming the noise [ ]w n is a random variable with known 
probability distribution function (PDF), each damage state is modeled as a multivariate 
PDF. Damage detection is a multiple hypothesis testing problem; damage not present 
 0H and damage present  KH . Classification is accomplished through multiple 
hypothesis testing; decide between  0 1 2 1, , , , .K KH H H H H  The design of detectors, or 
the decision rule that decides the proper hypothesis for a given state, is dependent upon 
the parameters of the signal and corresponding PDF.  
 

Binary Hypothesis Testing 

A binary hypothesis test results from Equation (1) when, 0kA  for 0,1k  . This 
model simulates the problem of deciding if damage is or is not present. Simple binary 
hypothesis testing, is deciding between two hypotheses where the PDFs’ parameters 



under each hypothesis are known. The Neyman-Pearson method says to maximize the 
probability of detection DP for a given probability of false alarm FAP  , decide 1H if  
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Figure 1: Binary hypothesis testing. 

where 1θ̂ is the maximum likelihood estimate (MLE) of 1θ assuming 1H is true (maximizes

1 1( ; , )p Hx θ ), and 0θ̂ is the maximum likelihood estimate of 0θ assuming 0H is true 
(maximizes 0 0( ; , )p Hx θ ).  
 

Signal Model 

An array of M transducers  located at arbitrary position 
m m

T

m x yp p   p , samples the 
spatiotemporal field for backward or forward scattering from damage with inter-element 
transducers spacing sufficiently small to allow phase coherent processing and avoid 
affects from spatial aliasing. The scattering source is assumed located several 
wavelengths away from the array center, and any scattering received by the array 
approximated as a plane wave with wavevector,  k , where the superscript 1, 2 P    
represents the scattered wave mode. A scattered signal received at the thm  transducer 
and sampled discretely in time is mathematically modeled as  
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where  A  is amplitude,   is absolute phase relative to the scattering source,  f  is temporal 
frequency, and   is the relative inter-element phase delay due to the direction of 



propagation for given a wavevector. An observation is composed of N samples ranging from
0 1n N  . The inter-element phase delay referenced to the array center for mode  , 

propagating in direction  ,is  
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where  
pc  is the phase velocity. The function    ,n r , is a boxcar function that 

represents the time when wave mode  , scattered from a source a distance r away, is 
present at all array transducers,  
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where    
gn r c  is the arrival sample,  

gc  is group velocity and  K  is the length of the 
signal.  A single mode signal model is given as  
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Detector Derivation: location, amplitude, phase unknown 

It is assumed that amplitude, absolute phase, and scattering location for the signal 
model are deterministic but unknown and that the excitation frequency, phase velocity 
and group velocity are known. This represents an active sensing scheme where a known 
actuation signal interrogates a plate structure of known dispersion relation for damage 
of unknown size, and location. Determining the presence of damage is equivalent to a 
binary composite hypothesis test where under the null hypothesis, 0H , only noise is 
present and under the alternative hypothesis, 1H , noise and scattering from damage is 
present. The observed array data under each hypothesis is a vector random variable and 
described by a probability density function (PDF). Letting x represent the observed 
array data vector, the PDF under 0H is represented as  0;p Hx and under 1H as 
 1 1; ,p Hx θ , where 1θ is a vector of the unknown parameters. To decide between the two 

hypothesizes, the unknown parameters are first estimated and then used in a generalized 
likelihood ratio test (GLRT). The GLRT decides 1H  if  
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where 1θ̂ is the maximum likelihood estimate (MLE) of θ  under 1H , the value of 1θ  that 
maximizes  1 1; ,p Hx θ . The detector assuming only a single propagating mode model is 
given as  
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See (Jarmer, Flynn and Todd 2013) for a derivation and description of the detector. 



PROBABILITY OF DETECTION 

Theoretical POD Curves 

The probability of detection and false alarm for the theoretical detector is given as  
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1 is equal to the energy to noise ratio (ENR), 
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 is the right tail probability for a central Chi-Squared PDF with 2 degrees of freedom 
and similarly  2

2
Q

 
, is the right tail probability for a noncentral Chi-Squared PDF with 

2 degrees of freedom and noncentrality parameter 1 . Figure 2 is a plot of probability 
of detection as a function of ENR for false alarm rates ranging 1e-1 to 1e-6. POD 
increases with ENR level and with decreasing false alarm rate. 

The probability of detection is thus a function of the energy to noise ratio which 
allows for the incorporation of model assisted POD through the signal amplitude and 
noise parameters. For example the signal amplitude can be modeled as an exponential 
decay when propagating through complex structural features such as longerons. Figure 
3 shows experimental data and an exponential decay model for an aerospace structure 
consisting of wave propagation through multiple longerons in both flat and curved 
fuselage sections.  

Incorporating this model, we explicitly write the probability of detection as a 
function of inspection distance, DI , as  
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Figure 4 shows the resulting receiver operating characteristic (ROC) curves; as the 
inspection distance increases the performance of the detector decreases due to the 
resulting attenuation of the waveform.  

In a similar manner, the variance for the uncorrelated Gaussian noise, 2 , can be 
parameterized as a function of repeated averages. In theory, uncorrelated Gaussian noise 
variance is reduced by a factor of 1 AveN where AveN is the number of averages. Figure 

5 shows the theoretical reduction in noise variance along with experimental data 
whereby repeated data sets were collected for averages ranging from 1 to 4096. Figure 
6 illustrates the effect of averaging on a time series trace. Figure 7 is an illustrative ROC 
curve where the ENR ratio is modified to show the effects of increasing number of 
averages as even for a single actuation the POD can be very high. For active guided 
wave SHM applications, white Gaussian noise is not the primary factor which dictates 
POD. Instead the main influencing factor is in-frequency band noise caused by 
imperfect baseline subtraction. 
 
 



 
Figure 2: Theoretical POD curves for single mode array detector. 

 

Figure 3: Theoretical and experimental attenuation profiles. 

 

Figure 4: ROC curve as a function of inspection distance. 



 

Figure 5: Theoretical and experimental reduction of noise variance for increasing number of averages. 

 

Figure 6: Reduction of uncorrelated noise variance due to increasing number of averages. 

 

Figure 7: Illustrative ROC curve parameterized by number of signal averages. 



CONCLUSIONS 

During prior work, experimental PoD and ROC curves were generated by Monte 
Carlo methods using a large number of experimental test runs for a notch in an 
aluminum sandwich panel. This paper focused on the use of Model Assisted Probability 
of Detection (MAPOD) to examine the implications of various variables on the 
generated PoD and ROC curves. The effects of distance to damage and number of 
averages collect were empirically calibrated, and the resulting PoD and ROC curves 
were presented. Future planned work will focus on the effect of non-ideal variables on 
PoD. This includes the testing of specimens under varying temperature and strain in 
addition to investigation of other factors of influence such as repeatability of sensor 
bond line and independence of repeated sampling on an individual test specimen.  PoD 
and ROC curves are essential for assessing the reliability of SHM methods, which must 
be conducted in order to field these technologies within any commercial or military 
application. 
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