

mechanical design composites engineering structural health monitoring

Certifying Structural Health Monitoring Systems

Characterizing Durability, Reliability & Longevity

Seth S. Kessler, Ph.D.

skessler@metisdesign.com

222 Third Street • Cambridge, MA 02142 • 617.661.5616 • http://www.metisdesign.com

Introduction

- Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse "changes" in components in order to reduce life-cycle costs and improve safety
- Involves integrating a non-destructive evaluation (NDE) device, or collection of devices, into a vehicle to collect prognostic data
 - can be embedded or surface mounted
 - benefits to both wired and wireless systems
 - detection methods can be active (excitation) or passive (witness layer)
 - integrate into new vehicles or retrofit ageing vehicles to facilitate CBM
 - interrogation of system can occur continuously or intermittently

ISHEM 2005

Problem Statement

- Greatest benefits can be achieved by the Aerospace industry
- Limited vehicle monitoring capabilities available presently
 - black-boxes on civil aircraft (record metrics such as velocity, altitude, etc)
 - health usage monitoring (HUMS) on newer military air and rotorcraft
 - most current SHM research has focused on detection methods, sensor optimization and interpretation algorithm development
 - valuation has largely been limited to laboratory-scope testing
- Characterization standards are necessary for SHM certification
 - > measure durability in realistic operating conditions
 - design for static and dynamic mechanical limitations
 - calculate reliability and longevity of integrated devices

Durability

- Durability describes the response of a material, component or system to its operating environment over time
- Failure of aircraft subsystems have catastrophic consequences
- Several areas of concern need to be addressed
 - environmental susceptibility
 - electromagnetic interference
 - > mechanical loading
- Standards in place to regulate durability of aircraft components
 - maintained by aircraft manufacturers and government officials
 - > describe experimental setup, conditions, and rationale behind the test
 - > provide charts to determine the test intensity and passing criteria

Current Standards

• RCTA/DO-160

- "Environmental Conditions and Test Procedures for Airborne Equipment"
- Recommended by the FAA to show compliance with environmental airworthiness requirements (FAR AC21-16D)
- Defines procedures and criteria for airborne equipment ranging from light aircraft to commercial jets and transports

• MIL-STD-810

- "Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests"
- provides guidance for environmental tests to qualify DoD components
- > adds conditions such as ballistic, pyro and tethered landing shock

• MIL-STD-461

- Department of Defense Interface Standard Requirements for the Control of Electromagnetic Interference Characteristics of Equipment"
- Describes test protocols for evaluating conducted and radiated emissions from DoD electronic components, as well as EMI susceptibility

Temperature

- **Operational testing**
 - simulates exposure extremes for storage and designed flight conditions
 - sensors are saturated at the peak temperature for 3 hours \triangleright
 - followed by functional testing for two hours at the extreme peak
 - cold extreme of -55°C for anticipated aircraft SHM conditions
 - > hot extreme of $85^{\circ}C$
- Thermal shock testing
 - > simulates takeoff from a desert climate to a cruise at a high altitude
 - test begins with the specimen at its cold extreme of -55°C
 - followed by a ramp of 10°C/min to 85°C and held for 2 minutes \triangleright
 - then ramped back down to -55°C where the sensor is tested for one hour \triangleright
 - > lastly a 30 minute hold time before a second identical cycle is performed

Pressure

- Altitude test
 - > decrease pressure to maximum operating altitude of 30km (1.10kPa)
 - > performance is tested for 2 hours at low pressure
- Emergency decent
 - > decompress from 2.4km (75.36kPa) to 30km (1.10kPa) in 15 seconds
 - > performance is tested for 10 minutes at low pressure
- Overpressure
 - simulates routine testing of pressurization system
 - > pressure equivalent to -4.6km (169.73kPa) is maintained for 10 minutes
 - performance is tested at ambient pressure

Moisture

• Humidity

- > specimens are placed at 85% relative humidity and 30°C
- raise to 95% humidity and 60°C over 2 hours, maintain for 6 hours
- > gradually reduce to 85% humidity at 38°C over next 16 hours
- > complete two cycles then test performance of the sensor within 1 hour

Condensation

- > specimens are placed in a cold -10°C chamber for 3 hours
- relative humidity
- test performance of the sensor for 10 minutes in warm chamber

Fluid Susceptibility

- Fluids grouped into two major categories
 - > oil-based fuels, hydraulic fluids, lubricating oils
 - > water-based cleaners, disinfectants, coolantants, fire extinguishants

• Spray testing

- > specimens are sprayed to remain wet in 4 hour intervals (minimum)
- > conducted over 24 hours, test performance of the sensor for 10 minutes
- > one fluid group is tested at a time
- Saturation testing
 - ➢ following spray test, store specimens at 65°C for 160 hours
 - return to room temperature for performance testing over 2 hour period

Vibration

- Mechanical vibration
 - sinusoidal sweep is applied to specimens for 1 hour per axis
 - sweep range begins at 5Hz with an amplitude of 2.5mm peak-to-peak
 - \succ sweep range ends at 2000Hz with an amplitude of 2.5µm peak-to-peak
 - performance of sensors is continuously tested
- Acoustic noise
 - > specimens are placed in a reverberation chamber
 - > overall sound pressure level of 160dB applied for 30 minutes
 - random frequencies excited up to 10,000 Hz
 - performance of sensors is continuously tested

Acceleration

• Maneuvering

- > centrifuge spun up to 27g, and held for 1 minute at each orientation
- performance of specimens tested at conclusion of spin

• Operating shocks

- > simulate shocks such as hard landings and carrier takeoff and landing
- > spectrum approximating a terminal saw tooth wave, duration of 11ms
- peak value of 6g applied three times in each orientation

• Crash safety

- > assure the equipment does not detach and become projectile in crash
- terminal saw tooth wave with a peak value of 20g in each orientation

Electromagnetic

- EMI susceptibility & emissions
 - > 4 measurements of conducted susceptibility through external cables
 - measurement of conducted emissions through external cables
 - measurement of radiated susceptibility (both wired and wireless)
 - measurement of radiated emissions (both wired and wireless)
- Other EMI effects
 - > performance following typical voltage spikes through main power bus
 - electrostatic-discharge (arcing)
 - lightning strike (power spike, heating, acoustic wave)

Combined Loading

- No combined tests are explicitly specified in the standards
 - > need for application dependant combined tests is expressed
 - actual combined test procedure left to the discretion of testing engineers
- SHM environments dictate the need for custom testing
 - tests should be designed to expose sensors to probable environments
 - > simulate take-off with high temperature and moisture along with vibration
 - simulate cruise with low temperature and pressure along with vibration
 - > many other application specific conditions exist

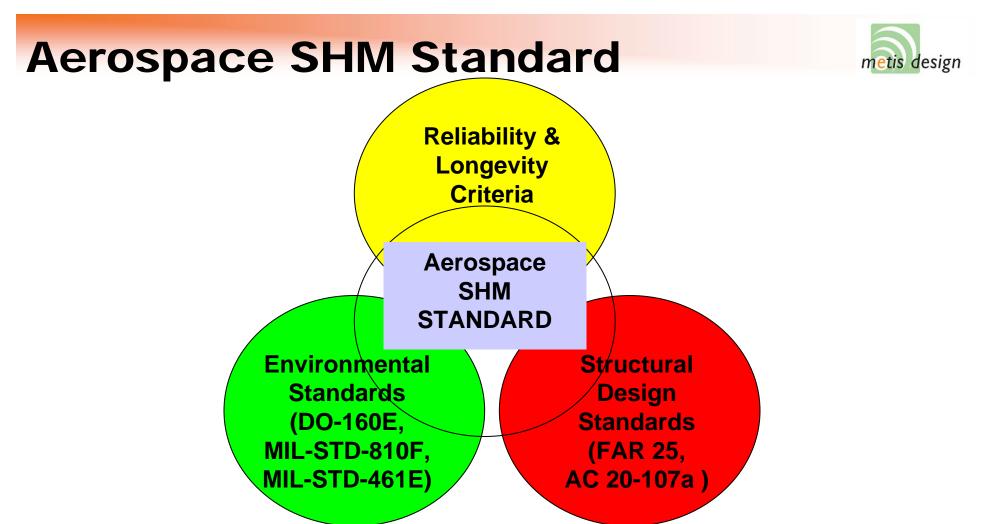
Mechanical Design

- SHM is predicated on the ability to intimately integrate sensors with a structure, whether surface mounted or embedded
 - > exposed to many of the same loading conditions as the host structure
 - > includes peak static stress and strain, as well as mechanical fatigue
 - > sensor elements and adhesives can disbond, crack, soften, or decouple
- Design criteria listed for major aircraft components in FAR 25, however no standards directly specify mechanical design criteria for sensors or actuators bonded to components

ISHEM 2005

MDC Proprietary

Self-Imposed Fatigue


- Many SHM systems rely on high-frequency actuation for wave propagation or modal excitation that endure millions of cycles
 - mechanical fatigue of actuator element can become an issue
 - > fatigue of attached subcomponents such as bonded electrodes, etc.
- Additional issues piezoelectric wafers and shape memory alloy
 - > electromagnetic fatigue can degrade actuation properties over time
 - > can also relax or alter poling and memory orientations

Reliability & Longevity

- To achieve the cost benefits of condition-based maintenance, sensors must be sufficiently reliable so as not to require replacement within the life of the component being monitored
- Reliability describes the probability of a device failing to perform to its required specifications over its expected lifetime
 - manufacturing variability (quality control)
 - installation conditions and preparation procedures
 - > algorithms and logic robustness in software are also important
- Longevity relates to the ageing of components over time
 - "death by natural causes" gradual degradation leads to a safe-life limit
 - > repetitive environmental and mechanical factors wearing away at parts

- Gaps exist in regulating criteria for intimately integrated devices
- Need for standard to characterize and certify smart structures
 - > suitable durability, reliability, longevity and mechanical criteria
 - SHM systems would be a subset of a smart structure standard
 - > application dependant test matrix (e.g. vacuum and radiation for space)

Acceptance

- Despite certification procedures, acceptance of SHM systems by end users (such as airlines & DoD) will still be a challenge
 - > inertia of current manual inspection interval procedure (if it's not broke...)
 - > reluctance to trust new technology with minimal service data
 - > potential upfront cost implications for hardware, software and training
- Staggered introduction of SHM systems
 - initially systems can be used to monitor damage for off-line comparison
 - second phase would include use of SHM to expedite manual inspection
 - > third tier would give monitoring responsibilities over limited components
 - complete implementation once large volume of service data is collected
- Better economic models are necessary for convergence
 - most current models include discontinuities in value stream
 - > end–users' desire for 3-year return-on-investment easily achievable

Summary

- SHM devices must withstand conventional operating conditions to avoid failure within the life of the component being monitored
- Federally regulated standards currently provide characterization requirements for aircraft components
- Need exists for comprehensive reliability, longevity and mechanical loading requirements (static & dynamic)
- Suggest the development of a standard specifically suited to smart structure certification for the aerospace industry
- Work remains for acceptance prior to viable commercialization
- Integrated SHM systems will be an important component in future aircraft designs to reduce costs and improve safety

M.E.T.I.-Disk SHM Devices

- Common device characteristics
 - > concentric PZT actuator/sensor elements
 - Flexible circuit for power and shielding
 - encapsulation to protect components
 - > 2-part liquid adhesive bond to structure
 - nominal drive of 20Vpp, sense of 20mVpp
 - > Lamb wave, modal analysis, AE capable
- M.E.T.I.-Disk 2 Analog SHM Device
 > co-axial cables for data & power
- M.E.T.I.-Disk 3 Digital SHM Device
 - > 1MHz 16-bit ADC & 1MS/s 8-bit DAC
 - > USB connectors for data & power, CAN bus
- M.E.T.I.-Disk 4 Wireless SHM Device
 - integrated wireless chip & rechargeable battery
 - removes cables, connectors, weight and cost

