

Seth S. Kessler, Ph.D. | President/CEO Metis Design Corporation | 13 November 2019

In Aerospace To register: www.ndt-aerospace2019.com

structural health monitoring multi-functional materials lean enterprise solutions

205 Portland St • Boston, MA 02114 • USA • +1 617 447 2172 • http://www.metisdesign.com

What is SHM?

• Structural Health Monitoring (SHM)

- > Defined by Aerospace Industry Steering Committee for SHM (AISC-SHM) in ARP-6461 (also A4A MSG-3)
 - --- "the process of acquiring & analyzing data from on-board sensors to evaluate the health of a structure"
- Defined by United States Air Force (USAF) in MIL-STD-1530D
 - -- "a nondestructive inspection process or technique that uses in-situ sensing devices to detect damage"
- Essentially a suite of NDT sensors that fly ATTACHED TO the aircraft
 - -could include any presently installed aircraft sensors and/or application-specific new sensors to be installed

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 2 of 30

SHM Architecture

OPERATIONAL MONITORING

DAMAGE MONITORING

How does SHM Differ from NDT?

- Nondestructive Testing (NDT): examination of material to determine if damage is present
 - Must not adversely effect material in any way
 - > Typically requires a high degree of human interaction by experts
 - > Inspections are performed locally, focused on specific areas
 - > Requires access to area of interest, often compelling tear-down
- SHM: in-situ sensing allows for rapid, remote & on-demand condition assessments
 - > Minimize human factors with automated data collection & analysis
 - > Can cover large areas quickly (global detection)
 - > Can provide greater vigilance/sensitivity in key areas (local detection)
 - > Overcome accessibility, complex geometry & depth limitations
 - > Eliminate costly & potentially detrimental disassembly (collateral damage)

What are the Consequences of these Differences?

- Still requires same detection sensitivity quantification as traditional NDT
 - Probability of Detection (POD) & Probability of False Positive (PFP)
 - > Statistical testing could be much more expensive for SHM because sensors are permanently installed
 - Processes like described in MIL-HDBK-1823A only allow 1 data point per specimen due to independence assumption
 - -Sensor durability also becomes a major factor, must be considered as part of design of experiment (DOE)
- Now must also qualify airworthiness similar to any airborne hardware
 - > Environmental (range of typical operating conditions does not effect performance)
 - Mechanical (will not become a projectile under shock/impact/vibration loading)
 - > Electrical (will not interference with other on-board equipment)
 - > Software* (special considerations if system is powered in flight vs just ground-based collection)

Airworthiness Standards are Straightforward

MIL-STD-810H: Military Environmental Airworthiness		
500.6	Low Pressure (Altitude)	
501.6	High Temperature	
502.6	Low Temperature	
503.6	Temperature Shock	
504.2	Contamination by Fluids	
505.6	Solar Radiation (Sunshine)	
506.6	Rain	
507.6	Humidity	
508.7	Fungus	
509.6	Salt Fog	
510.6	Sand and Dust	
511.6	Explosive Atmosphere	
512.6	Immersion	
513.7	Acceleration	
514.7	Vibration	
515.7	Acoustic Noise	
516.7	Shock	
517.2	Pyroshock	
518.2	Acidic Atmosphere	
519.7	Gunfire Shock	
520.4	Temperature, Humidity, Vibration, & Altitude	
521.4	Icing/Freezing Rain	
522.2	Ballistic Shock	
523.4	Vibro-Acoustic/Temperature	
524.1	Freeze / Thaw	
© 2019 Metis Design Corporation		

WIIL-911	D-461G. Military Electromagnetic Interference
CE101	Conducted Emissions, Audio Frequency Currents, Power Leads
CE102	Conducted Emissions, Radio Frequency Potentials, Power Leads
CS101	Conducted Susceptibility, Power Leads
CS114	Conducted Susceptibility, Bulk Cable Injection
CS115	Conducted Susceptibility, Bulk Cable Injection, Impulse Excitation
CS116	Conducted Susceptibility, Damped Sinusoidal Transients, Cables & Power Leads
CS117	Conducted Susceptibility, Lightning Induced Transients, Cables & Power Leads
CS118	Conducted Susceptibility, Personnel Borne Electrostatic Discharge
RE101	Radiated Emissions, Magnetic Field
RE102	Radiated Emissions, Electric Field
RS101	Radiated Susceptibility, Magnetic Field
RS103	Radiated Susceptibility, Electric Field

RTCA DO-160 / EUROCAE ED-14 (rev G change 1)

4.0	Temperature
4.0	Altitude
5.0	Temperature Variation
6.0	Humidity
7.0	Shock & Crash safety
8.0	Vibration
9.0	Explosion proofness
10.0	Water proofness
11.0	Fluids susceptibility
12.0	Sand & Dust
13.0	Fungus Resistance
14.0	Salt & Fog
15.0	Magnetic effect
16.0	Power input
17.0	Voltage spike
18.0	Audio Frequency Conducted Susceptibility
19.0	Induced signal susceptibility
0.0 & 21.0	RF emission & susceptibility
2.0 & 23.0	Lightning susceptibility
24.0	Icing
25.0	ESD
26.0	Flammability

NDT in Aerospace 2019 – 6 of 30

Probability of Detection Quantification not as Straightforward

- MIL-HDBK-1823A most common precedent to assess sensor detection capabilities
 - > Key metric is $a_{90/95}$ 90% probability of detection (POD) with 95% confidence
 - Must keep probability of false positive low too (i.e. minimize incorrect indications)
- Economically impractical to obtain $a_{90/95}$ for SHM using traditional approaches
 - > Expensive due to permanent sensor installation, need for many specimens (60+)
 - > Do not allow for repeated inspections as flaw grows (presumes independence of data)
 - > Statistically Equivalent to POD (SEPOD) alternative models for SHM that capture degree of dependence
 - -Length at Detection (LaD) developed by Dr. Floyd Spencer at Sandia National Laboratory
 - Random Effects Model (REM) developed by Prof. Meeker at Iowa State University
- Examples of SHM methods
 - > Potential Drop (PD) methods use change in resistance to indicate a <u>local</u> "hot spot" flaw
 - > Guided Wave (GW) methods use piezoelectrics to detect global changes in ultrasonic wave propagation

Example Case 1: Potential Drop (PD) Damage Detection (LOCAL)

- Physical characteristics
 - Form-factor: 2 x 2 cm (can be anything)
 - Thickness: ~ 100 micron
 - Mass: ~10 mg/cm²
 - Bend-radius: ~ 5 mm
- Crack detection mechanism
 - > Laminated CNT assembly bonds conformally to structure like strain gauge
 - > CNT network electrical resistance changes proportional to crack length
 - > Completely passive sensor, crack "recorded" even when no power applied
- Benefits of CNT over conventional metallic foil crack gauges
 - Continuous response (as opposed to fixed gated response)
 - > More durable under static & fatigue loads, not susceptible to corrosion
 - > Easy to fabricate in custom sizes and shapes, including cutouts

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 8 of 30

CNT Crack Gauge Resistance vs Measured Crack Length

Hyperlapse Video of 4-Point Bending Fatigue in Action @ 3300 $\mu\epsilon$

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 10 of 30

CNT Crack Gauge Predicted vs Measured Crack Length

PD Method Detection Sensitivity using Length at Detection Model

- PD detection data is best fit by a gaussian distribution
- LaD provides an $a_{90/95}$ of 1.3 mm based on data up until detection
- Statistical analysis performed by Prof. Meeker @ ISU as consultant

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 12 of 30

PD Method Detection Sensitivity using Random Effects Model

- Density Plots of Bayesian Estimation Results
- REM provides an a_{90/95} of 1.32 mm using all data (up to 18 mm)
- a_{90/95} improves to 1.01 mm when only considering data < 5 mm

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 13 of 30

PD Method Blind Detection Sensitivity Evaluation at FAA Tech Center

- Additional blind testing conducted through FAA Tech Center in Atlantic City
- Tensile-tensile fatigue tests on 9 Al-Li bars with EDM notch (data every 1000 cycles)
- Prediction + visual crack data sent to Prof. Meeker @ ISU for SEPOD analysis © 2019 Metis Design Corporation NDT in Aerospace 2019 – 14 of 30

Blind PD Method Detection Sensitivity Study Results from FAA

- SEPOD models used to estimate a_{90/95} from blind data, same parameters as prior test
- a_{90/95} slightly higher than lab results, variability of fatigue heating suspected © 2019 Metis Design Corporation NDT in Aerospace 2019 – 15 of 30

Comparison of Potential SEPOD Approaches

- Length-at-Detection (LaD) method
 - Computationally simple
 - Requires a minimal amount of data (just until first detection)
 - Requires assumption about distribution of detectable crack sizes (e.g., normal or lognormal), with little information to discriminate among different assumptions that might give vastly different a_{90/95} values
 - $> a_{90/95}$ of 1.3 mm calculated for 4-pt fatigue, 2.9 mm for tensile fatigue

Random Effects Model (REM) method

- Uses available data more efficiently
- More information to check model assumptions
- More robust to departures from model assumptions
- Provides a framework for model-assisted probability of detection (MAPOD)
- More complicated computational algorithms are needed
- $> a_{90/95}$ of 1.3 mm calculated for 4-pt fatigue, 2.9 mm for tensile fatigue

NDT in Aerospace 2019 – 16 of 30

Example Case 2: Guided Wave (GW) Damage Detection (GLOBAL)

- GW uses ultrasonic excitation of structure to produce Lamb waves
 - Measure transmission/ reflection of wave energy's interaction w/structure
 - Piezoceramic (PZT) wafers commonly used as actuators & sensors
 - > PZT expand/contract w/high force-potential when dynamic voltage applied
 - Can operate at high frequencies (10 kHz 10 MHz), good for actuation
 - Dynamic strain creates potential between electrodes, good for sensing
- During presented work, a PZT beamforming array was used
 - > Central 6 mm \varnothing actuator surrounded by six 3 mm \varnothing sensors (spaced 60°)
 - Narrowband linear 50 250 kHz sinusoidal chirp excitation at 20Vpp

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 17 of 30

GW Method Beamforming PZT Array for Damage Detection

Each node processes phase-coherent, location independent "sonar-scan"

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 18 of 30

GW Method Detection Sensitivity Assessment Experiments

- 4-point bend fixture used again
 > 8 aluminum beams tested (300 x 25 x 3 mm)
 > 50,000 fatigue cycles at room temperature
 > PZT arrays bonded to either end of beam
- FAA tensile-tensile fatigue specimens shared
 > 9 Al-Li specimens tested (600 x 40 x 2 mm)
 - > 35,000 fatigue cycles at room temperature
 - PZT arrays bonded 90 & 115 mm from EDM notch
- Statistical analysis performed by Prof. Meeker
 - Data collected every 1,000 cycles in both cases
 - One specimen used for crack length calibration
 - > LaD analysis performed, too much scatter for REM

Data Acquisition Hardware

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 19 of 30

GW Method Detection Sensitivity using LaD Model (4-Point Bending)

- GW detection data is best fit by a Gaussian distribution
- LaD provides an $a_{90/95}$ of 0.25 mm based on data up until detection
- Did observe odd phenomenon after detection w/DI's following 2 diverging trends

NDT in Aerospace 2019 – 20 of 30

GW Method Pitch-Catch Detection Sensitivity using LaD Model (FAA)

- Pitch-Catch (PC) data using PZT pairs on either side of EDM notch
- Able to produce better accuracy with additional sensor paths
- Analysis of PC data yields an $a_{90/95}$ value of 1.9 mm

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 21 of 30

GW Method Pulse-Echo Detection Sensitivity using LaD Model (FAA)

- Pulse-Echo (PE) data using PZT data from sensors independently
- Advantage of only using one sensor array, better at boundaries
- Analysis of PE data yields an a_{90/95} value of 3.3 mm

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 22 of 30

Summary of Preliminary SEPOD Assessment

Investigation of alternative detection sensitivity models applied to PD & GW SHM method

- 4-pt bending fatigue of AI beams
- Tensile-tensile fatigue of Al/Li beams
- Prof. Meeker (Iowa State) for statistical analysis
- > 2 statistical approaches: Length at Detection (LaD) & Repeated Measured Model (REM)

• Initial detection sensitivity results for PD method

- **>** Results have been consistent between LaD & REM² approaches
- $> a_{90/95}$ value of 1.3 mm for laboratory 4-pt bending fatigue
- $\geq a_{90/95}$ value of 2.9 mm for blind tensile-tensile fatigue (temp variations)

• Initial detection sensitivity results for GW method

- > $a_{90/95}$ value of <1 mm for laboratory 4-pt bending fatigue
- $> a_{90/95}$ value of 1.9 mm for pitch-catch (PC) data in blind tensile-tensile fatigue
- > a_{90/95} value of 3.3 mm for pulse-echo (PE) data in blind tensile-tensile fatigue

Need much more data to <u>validate</u> alternative SEPOD approaches vs MIL-1823A

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 23 of 30

Aerospace Industry Steering Committee for SHM

- AISC-SHM is organized under SAE International
 - Under the supervision of the Aerospace Council
 - > Reliability, Supportability & Health Management Systems Group
 - Follows guidance from the IVHM Steering Group

- Goal to facilitate implementation of SHM through development of standards & guidelines
 - > Have met regularly twice a year for 13 years, alternate US & abroad
 - 1st meeting of AISC-SHM hosted by Stanford University (Fall 2006)
 - > 28th meeting of AISC-SHM hosted by Safron in Paris (Spring 2020)
- Committee has over 150 members in various capacities
 - Average meeting has ~50 attendees from 4 continents
 - > OEM, integrators, technology providers, airlines, academics, expert consultants
 - > Regular participation from FAA, EASA, NASA, US military aviation representatives

NDT in Aerospace 2019 – 24 of 30

SAE International Aerospace Recommend Practice (ARP) 6461

• "Guidelines on Implementation of Structural Health Monitoring on Fixed Wing Aircraft"

- Published by AISC-SHM committee September 2013
- Original mission to provide an approach for standardizing of SHM
- Document represents combined views of all major aircraft OEM
- > ARP has been vetted by commercial, military & government experts
- > Address hardware, integration & validation requirements for SHM

• SAE ARP-6461 does not provide:

- Details of specific SHM technologies or providers
- Details for specific aircraft systems
- Instructions for qualification & certification
- Other documents to be published soon
 - > AIR6245 Integration of SHM into Fixed-Wing Military Aircraft
 - > AIR6892 Guidelines for Implementation of SHM on Rotorcraft
 - ARP6461A Updated version anticipated in 2020
 - > ARP6821 Guidance for Assessing Detection Capability for SHM

	AEROSPACE	ARP6461
INTERNATI	ONAL- RECOMMENDED PRAC	CTICE Issued 2013-09
	Guidelines for Implementation of Struc	tural Health Monitoring on Fixed Wing Aircraft
	RATIONALE	
The develo in aerospa stakeholde Suppliers a of SHM so efficient ter	apment of Structural Health Monitoring (SHM) technologi ace applications is an activity that spans multiple engin sr is. Regulatory Agencies. Atrines. Orginal Equipme are crucial to the process of certifying viable SHM solution lution approaches, and recommended practices for reach chnology development.	as to achieve Vehicle Health Management objective eering disciplines. It is also recognized that many It Manufactures (OEM), Academia and Equipment s. Thus a common language (definitions), framework ng those solutions, are needed to promote fruitful and
	TABLE OF CONTE	NTS
1	SCOPE	
1.1	Purpose	
1.2	Field of Application.	
1.3	An Overview of This Document	
1.3.1	General Approach	
1.3.2	Designing and Maintaining Airworthy Structures	
1.3.3	Evolution of Aircraft Products Including Structures a	nd SHM Systems
1.3.4	Requirements, V&V, and Certification	
,	REFERENCES	
2.1	Applicable Documents	
2.1.1	SAE Publications	
212	FAA Publications	
2.1.3	EASA Publications	(
2.1.4	TCCA Publications	
2.1.5	RTCA Publications	
2.1.6	A4A Publications	
2.1.7	U.S. Government Publications	
2.1.8	Other Publications	
2.2	Related Publications	
2.3	Definitions	
2.4	Acronyms	
3.	INTRODUCTION TO AIRCRAFT STRUCTURES DE	SIGN AND MAINTENANCE
3.1	Structures Design Principles	
3.2	Current Structures Maintenance Principles	
3.2.1	A4A MSG-3 Document	
3.2.2	FAA AC 121-22 "Maintenance Review Board Proces	lures"
3.2.3	Other Instructions for Continued Airworthiness	
3.3	Summary	
	,	
SAE reviews e suggestions.	summers yours town the promote that, the reports possible of y SAE to advance ry, and its applicability and suitability for any particular use, including any patient in ach technical report at least every five years at which time it may be revised, r	• we want to resulted and engineering scentres, in the dee of this report is ingement arising therefore, is the sole responsibility of the user." safirmed, stabilized, or cancelled. SAE invites your written comments an
	13 GHE International	
Copyright © 20 All rights reser	rved. No part of this publication may be reproduced, stored in a retrieval syst	em or transmitted, in any form or by any means, electronic, mechanical

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 25 of 30

There are no Regulatory Roadblocks for SHM in Commercial Aviation

- Existing damage-tolerant mindset presumes a scheduled task-based approach
 - > Design philosophy considers range of threats generally without regard to likelihood of occurrence
 - > Aerospace OEM define means & schedule for compliance with approval from FAA/EASA
 - > Lack of SHM familiarity may lead to unclear/inconsistent regulatory requirements levied on applicants
- Three primary aspects for certification
 - System qualification using existing requirements
 - Defining the declared application intent
 - Determining the appropriate criticality
 - Applying 25.1301, 25.1309 integrity requirements
 - Protocols to validate certification credit
 - > Instructions for Continued Airworthiness using existing requirements
- Presently multiple application pending at the FAA for pilot SHM implementations

Commercial Aircraft OEM Plans for Implementation of SHM

- A4A MSG-3 outlines process for determining initial scheduled maintenance requirements
 - > Means for developing maintenance tasks/intervals acceptable to regulatory, operators & manufacturer
 - SCHEDULED SHM (S-SHM): Structure inspection tasks for accidental, environmental and/or fatigue damage replaced by a scheduled interaction with a SHM device at fixed intervals
 - > AUTOMATED SHM (A-SHM): No pre-determined interval at which maintenance action must takes place, but instead relies on the SHM system to inform maintenance personnel that actions must take place
- Follow stepwise implementation for credit validation
 - > Initially focus on S-SHM using existing NDT intervals & direct comparison with NDT results
 - > Prove SHM sensitivity & reliability to damage type though seeded tests & on-aircraft trials
 - "Controlled Introduction to Service" to gain confidence
 - Lead fleet monitoring, establish robust feedback loop
- Introduce S-SHM in parallel with existing NDT to gain additional in-service validation

Commercial Aircraft OEM Timeline for Implementation of SHM

Assess conditional events w/SHM

NDT in Aerospace 2019 – 28 of 30

© 2019 Metis Design Corporation

Acknowledgments

- AISC-SHM (member organizations contributed content & images for several slides)
- Collins Aerospace (collaborator for GW method hardware)
- Analog Devices (collaborator for PD method hardware)
- US Air Force (funding under FA8650-15-C-2563 & FA8501-15-C-0025)
- FAA William J. Hughes Technical Center (collaboration under ANG-TT-CRDA-0352)
- Individual contributors to presented work
 - > Mr. Paul Swindell (FAA & chair of AISC-SHM Reliability Working Group driving SEPOD research)
 - > Prof. Bill Meeker (Iowa State University all statistical analysis presented)
 - > Dr. Gregory Jarmer (Metis Design Corporation all GW method results presented)

NDT in Aerospace 2019 – 29 of 30

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation +1 617-447-2172 x203 • skessler@metisdesign.com

© 2019 Metis Design Corporation

NDT in Aerospace 2019 – 30 of 30

