

mechanical design composites engineering structural health monitoring

Experimental Application of Optimized Lamb Wave Actuating/Sensing Patches for Health Monitoring of Composite Structures

Seth S. Kessler and Christopher E. Johnson Metis Design Corporation

Christopher T. Dunn Massachusetts Institute of Technology

Technology Laboratory for Advanced Composites Department of Aeronautics and Astronautics Massachusetts Institute of Technology

46 Second Street • Cambridge, MA 02141 • 617.661.5616 •

National Reconnaissance Office Office of Space Launch Contract #: NRO000-02-C-0625

http://www.metisdesign.com

Lamb Wave Methods

- Form of elastic perturbation that propagates in a solid medium
 - actuation parameters determined from governing equations
 - \succ excite A_o wave for long travel distances and to minimize clutter
- Damage can be identified in several ways
 - > group velocity approximately \propto (E/ ρ)^{1/2}, damage slows down waves
 - reflected wave from damage can be used to determine locations
- Present research utilizes piezoelectric actuators and sensors to detect energy present in transmitted and reflected waves

Anti-symmetrical Mode (A)	
Propagation Direction	∱ Through Thickness
Symmetrical Mode (S)	
	1

Recent Lamb Wave Research

- Optimization of Lamb wave testing procedure
 - selection of best actuating/sensing materials, adhesives, electrodes
 - more efficient actuating/sensing scheme for transmission and reflection
 - increased reliability, robustness and signal strength by 4x
- Algorithm development
 - > damage evaluation algorithms in MATLAB using filters and wavelets
 - tuned and validated by a large set of simple test results
 - Current software yields report on presence, location, and type of damage
- Test specimen database
 - testing sensors/algorithms on composite plates with variety of damage
 - testing sensors/algorithms complex sandwich structure specimens
 - observe effects of various core densities and thickness
 - observe effects of disbonds, delams, hardpoints and gaps

Actuator/Sensor Package

- PZT-5A material selected for actuator and sensor material
 - > Highest actuating voltage
 - > Temperature stability
 - Bandwidth of peaks
- Electrical & mechanical connections
 - > 3M 9703 conductive tape (2 mil)
 - > Brass Alloy 260 (1 mil)
- Increased signal strength 4x

Lamb Wave Test Setup

- Tests executed via PC laptop and NI data acquisition board
- Completely portable, simple to use and automated results
- HP oscilloscope and function generator have also been used

METIS_v1 Software Decomposition

	% Filter and wavelet	decomposition	
	data	-	
%Damage detection software executable version 1.			
function metis_v1(y,x); % (control, test) % Setup values from user values	% Piecewise max wa wavecoef waveplots	velet coefficients and plots	
% Initialize variables			
 % Filter and wavelet decomposition data % Piecewise max wavelet coefficients and plots wavecoef waveplots % Computing signalplot energycompute arrivalcompute 	•	Data subroutine us bandpass filters an desired format Wavecoef subrouti wavelet decompos Morlet mother wav	ses custom Butterworth ad truncates data into ne performs custom itions using modified elet
frequencycompute reflectioncompute % Reporting	•	Waveplots initialize subsequent plot for	es each of the rmats
energyreport arrivalreport frequencyreport reflectionreport finalreport	•	At this point in the data has been extreme be readily analyzed	code, all of the useful acted and "messaged" to d

METIS_v1 Software Computation

%Damage detection software executable version 1.0

function metis_v1(y,x); % (control, test)

% Setup values from user values

% Initialize variables init

% Filter and wavelet decomposition data

% Piecewise max wavelet coefficients and plots wavecoef waveplots

% Computing signalplot energycompute arrivalcompute frequencycompute reflectioncompute

% Reporting energyreport arrivalreport frequencyreport reflectionreport finalreport

% Computing	
signalplot	
energycompute	
arrivalcompute	
frequencycompute	
reflectioncompute	

- Computation section is the "gut" of software
- Four separate but related physical phenomena used to interpret and compare
 - energy integration
 - wave speeds arrival times
 - frequency spectra
 - reflected wave patterns
- Each subroutine is independent for upgrade
- Share common function to locate wavepeak

METIS_v1 Software Output

		Energy Analy	ysis		
	Control	Damage	Difference	Ratio	
E Near Sensor	30.09	35.53	-5.44	0.85	
E Far Sensor	10.95	9.88	1.06	1.11	
There appears	to be a 18% g	gain of energy	at the near se	nsor	
The structure r	nay be damag	ged			
Far energy loss	ses are nomin	al. No damag	ge has been de	tected with energy meth	od
		- Wave Arriva	als		
	Control	Damage	Diffe	rence	
Near Sensor	196.00	197.00	1.00)	
Far Sensor	529.00	560.00	31.00)	
•		-	2		
	Control	Frequency Pe Damage	eaks e Differ	ence	
Peaks Act	Control 14.00	Frequency Pe Damage 14.00	eaks e Differ) (ence 9.00	
Peaks Act Peaks Near	Control 14.00 14.32	Frequency Pe Damage 14.00 13.70	eaks e Differ) () -(rence 0.00 0.62	
Peaks Act Peaks Near Peaks Far	Control 14.00 14.32 14.65	Frequency Pe Damage 14.0(13.7(14.00	eaks e Differ) ()) -(rence 0.00 0.62 0.65	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift witl	Control 14.00 14.32 14.65 ney shift of 0.0 nin tolerances	Frequency Pe Damage 14.0(13.7(14.00 00 compared 1	eaks e Differ) ()) -() -(to nominal fre	rence 0.00 0.62 0.65 quency shift of 0.65	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift with	Control 14.00 14.32 14.65 acy shift of 0.0 nin tolerances	Frequency Pe Damage 14.0(13.7(14.0(00 compared f Vave Reflectio	eaks e Differ) ()) -() -(to nominal fre	rence 0.00 0.62 0.65 quency shift of 0.65	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift with Reflected way	Control 14.00 14.32 14.65 acy shift of 0.0 nin tolerances Wees at 510.00 c	Frequency Pe Damage 14.0(13.7(14.0(00 compared f Vave Reflection orresponding	eaks e Differ) ()) -() -(to nominal fre on Report to 4.75 inche	rence 0.00 0.62 0.65 quency shift of 0.65	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift with Reflected wave Waves travelir	Control 14.00 14.32 14.65 here shift of 0.0 hin tolerances wes at 510.00 c hig at a speed of	Frequency Pe Damage 14.0(13.7(14.0(00 compared f Vave Reflection orresponding of 23810 inch	eaks e Differ) () -() -(to nominal fre on Report to 4.75 inche es/second	rence 0.00 0.62 0.65 quency shift of 0.65	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift with Reflected wave Waves travelir	Control 14.00 14.32 14.65 acy shift of 0.0 nin tolerances wes at 510.00 c ng at a speed o	Frequency Pe Damage 14.0(13.7(14.0(00 compared f Vave Reflection orresponding of 23810 inch	eaks e Differ) (() -() -(to nominal fre on Report to 4.75 inche es/second	rence 0.00 0.62 0.65 quency shift of 0.65 s	
Peaks Act Peaks Near Peaks Far Tested frequen Band shift with Reflected wav Waves travelir	Control 14.00 14.32 14.65 acy shift of 0.0 nin tolerances wes at 510.00 c ag at a speed of a delaminatio	Frequency Pe Damage 14.0(13.7(14.0) 00 compared f Vave Reflection orresponding of 23810 inch DAMAGE St n at 4.75 inc	eaks e Differ) (() -() -(to nominal fre on Report to 4.75 inche es/second 	rence 0.00 0.62 0.65 quency shift of 0.65 s	

- Text output produced from
 Reporting section of code
- Reports for each method
 - integrated energy levels
 - wave arrival times
 - > frequency bandwidth peaks
 - wave reflection locations
- Damage Summary combines reports to determine damage state
- Self-calibrating, uses wave between actuator and adjacent sensor to calculate wavespeed
- Self-diagnostic, several checks on actuating signal to confirm wafers are functioning properly

metis design

Delaminated Results: Far Sensor

- Delaminated signal is time-lagged, slightly lower energy content
- Frequency bandwidth remains similar

Waterfall Plot Cross Sections

- Plotted for actuating frequency, points represent highest scales
- Troughs represent peak of waveform, threshold used for noise

Coupon w/Delamination Results

- Reflection revealed at around 510 us (also reflection from end)
- Corresponds to delamination at 4.75" (actual at 4.8")

Coupon w/Matrix Cracks Results

- Reflection revealed at around 493 us (also reflection from end)
- Corresponds to cracking at 4.72" (actual at 4.8")

HD AI Core w/Disbond Results

- Reflection revealed at around 238 us
- Corresponds to delamination at 4.76" (actual at 4.75")

HD AI Core w/Impact Results

- Reflection revealed at around 178 us
- Corresponds to damage at 3.6" (actual center at 4.25")

Hybrid Core w/Disbond Results

- Reflection revealed at around 202.5 us
- Corresponds to debond at 4.73" (actual at 4.75")

Lamb Wave Testing Conclusions

Thin laminates

- control laminates are very reproducible, used to calibrate thresholds
- > delaminated specimens yield reflections with little change to bandwidth
- matrix cracks yield frequency changes with some reflections

Sandwich structures

- > high density AI core specimens easily show disbond and impact damage
- Iow density AI core specimens yield similar results, slightly damped
- Nomex & Rohacell core specimens are further damped
- > solid thick and thin AI core have faster waves speeds, cleanest signals
- Mixed sandwich structures
 - high density AI core with center gap easily differentiated from disbond
 - half high density half solid Al produces wave with reflection at interface
 - > half high density half solid AI and disbond can be measured over joint

Recent Research Conclusions

- Optimized Lamb wave actuator/sensors and test configuration
 - increased signal strength nearly a factor of 4 over prior research
 - currently working on packaging to robustness of piezoceramic assembly
- METIS_v1 damage detection software
 - > exhibits 83% accuracy, nearly 100% for delamination (over 200 tests)
 - eliminates most subjectivity with automation and thresholds
 - threshold levels used to tune algorithms based on control specimen
- Experimental results
 - several combinations of small and controlled damage still yields measurable effect, the more damage, the more dramatic the results
 - > overall highly successful project, able to detect damage in all specimens

Future Research

- Development of a thin-film polymer rechargeable battery
 - matching size and power specifications for an SHM system
 - > AFOSR funded project, w/MIT Material Science & Microstrain Inc.
- Study of packaging techniques
 - isolate from harsh natural, mechanical, and electrical environments
 - > NSF funded project, w/MIT Aero/Astro department
- Comparison of behavior and reliability of SHM NDE methods
 - > different materials (metals, CFRP, GFRP)
 - > manufacturing processes (uni-tape, woven fabric, filament wound)
- Increase complexity of tests
 - test on built up section
 - > use multiple sensing methods at once to increase reliability
 - integrate multiple SHM components