

mechanical design custom sensor systems lean enterprise solutions

Application of Pattern Recognition for Damage

Classification in Composite Laminates

Seth S. Kessler, Ph.D. Pramila Agrawal, Ph.D.

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

Damage in Composite Materials

- Several challenges involved in detecting damage in composites
 - > metals: corrosion and fatigue vs. composites: delamination and impact
 - > modes interact, conducting fibers within insulative matrix
 - damage often below the visible surface, visual inspection overlooks
- Categorization of damage in composites
 - > ideally would like a binary top-level pristine or damaged categorization
 - > taking micromechanics view, material is fabricated with flaws
 - > microscopic flaws grow slowly, accelerated overload or impacts events
 - > damage threshold must be defined for some detectable flaw size level

- Would like further classification beyond presence of damage
 - Imited features may be used to separate damage and no damage
 - potential for large mode space for composites
 - may not be feasible to distinguish between modes if linearly inseparable
- Must extract many separate features for detailed classification
 - > pattern recognition methods can be trained to characterize damage
 - Iarge feature set may lead to redundancy and computational inefficiency
- Feature reduction techniques can be employed to reduce dimensionality IWSHM Conference 2007
 MDC Proprietary
 3

Standard Training Flowchart

Standard Testing Flowchart

MDC Proprietary

Data Acquisition

- Lamb wave is an elastic perturbation propagating in solid media
 - excitation shape and frequency can be optimized for particular geometry
 - \succ group velocity approximately \propto (E/ ρ)1/2, damage slows down waves
 - reflected wave from damage can be used to determine locations
 - > utilize concentric piezoelectric actuator/sensor pairs in pulse-echo mode
- Many advantages to Lamb waves over traditional methods
 - best damage size and range to sensor size ratios
 - sensitivity and range scales with input power level (with limitations)

Signal Conditioning

- Employed to de-noise acquired signal from unwanted content
- Noise can generally be described by 2 categories
 - incoherent or "white" noise can be removed through averaging
 - > coherent or EMI noise can be extracted in the frequency domain
 - close attention must be paid to signal phase
- Another important component is removal of unwanted artifacts
 - > could include boundary conditions as well as pre-existing conditions
 - > achieved by various methods in time, frequency and/or wavelet domains
 - > eliminate misleading signal characteristics, typically by using baselines

Feature Extraction

- Discriminative features from Lamb waves needed for analysis
- Time Domain features
 - time of flight, time position of max and subsequent secondary peaks
 - > time features can be observed from raw data itself with little processing
- Frequency Domain features
 - > max PSD value, shift in frequency response from baseline, phase value
 - Frequency features extracted using Fourier or Wavelet decomposition
- Energy Domain features
 - > max amplitude, total energy, mean/dev for signal,1st and 2nd difference
 - Features extracted through time and frequency-based functions

Feature Selection

- Select most representative and discriminative features from set
 - > too few features could result in reduced accuracy
 - larger set does not imply better classification, may degrade performance
- Many ways to select producing varying accuracy and efficiency
- Traditional method is one-way Analysis of Variances (ANOVA)
 - accomplished by comparing means of columns of data
 - selection based on a feature's ability to discriminate amongst states
- Principal Component Analysis (PCA)
 - > technique for reducing dimensionality of dataset
 - > transform multi-dimensional coordinate system to maximize variability

Feature Reduction - PCA

- Natural coordinate system of data is transformed
 - > original data represented as voltage vs time or intensity vs frequency
 - greatest variance captured by the 1st coordinate (1st principal component)
 - > 2nd greatest variance by the 2nd coordinate, etc
- Select principal components that encapsulate most variability
 - > data can be reconstructed with low order dimensionality
 - remaining components can be discarded
 - > 20 PC's capture 70% of the variability for 1000 point voltage vs time data

Pattern Recognition Algorithms

- Collection of mathematical models used to associate a set of test data with one of several pre-designated classifications
 - > some methods are statistical, others have learning capabilities
 - > all PR methods require training sets to define class "profile"
- 3 different pattern recognition techniques were investigated
 - K-Nearest Neighbor (KNN)
 - > Neural Network
 - > Decision Tree
- Each method was implemented independently, as well as in combination with other methods bound by simple logic

Pattern Recognition: Nearest Neighbor

• Method

- supervised learning algorithm
- > category of new data point is determined based on the closest neighbor
- K-nearest neighbor is based on majority category of K-nearest neighbors
- not a learning algorithm but based on memory where a new instance is based on input features and training samples

Advantages

- > analytically tractable
- simple implementation
- > uses local information, which can yield highly adaptive behavior
- > lends itself very easily to parallel implementations
- Disadvantages
 - Iarge storage requirements (worse as K increases)
 - computationally intensive recall (worse as K increases)
 - > most noise sensitive (particularly at low K values)

Pattern Recognition: Neural Networks

• Method

- machine-learning technique that uses weighted links
- simulates a network of communicating nerve cells
- input/output data is utilized to train the network
- network links are modified to capture the knowledge, so that after it has been adequately trained, it can be used to classify new input

Advantages

- > applicable to multivariate non-linear problems & parallel implementation
- > no need to assume an underlying data distribution (statistical modeling)
- > robustness towards noisy data, well suited for sensorial data processing

Disadvantages

- > minimizing overfitting requires a great deal of computational effort
- model tends to be black box or input/output table without analytical basis
- > need for large training sets (exponentially more sets than defined states)

Pattern Recognition: Decision Tree

• Method

- > essentially a series of "questions and answers"
- > data enters "trunk" and "branches" represent conjunctions of features
- lead to single classification or "leaf"
- > weight of each decision is implicit in the hierarchy of the branch structure
- > several trees assembled into "forest" can achieve a statistical consensus

• Advantages

- requires the least data and accommodates missing features
- in-built feature selection and weighing
- > tree structure inference builds domain knowledge
- > nonparametric or "distribution free"
- Disadvantages
 - unstable decision trees may be produced
 - > data split only by one variable at a time, rules deduced may be complex
 - trees may be overfitted

Experimental Setup

Plates	Damage Type	Damage Severity				
3	Impact (5 lbs dropped weight)	4", 8", 16", 32"				
3	Hole (center drilled)	¹ / ₃₂ ", ¹ / ₈ ", ¹ ⁄ ₄ ", ¹ ⁄ ₂ "				
3	Delamination (corner cut)	1⁄4", 1⁄2", 1", 1.5"				

- 11.75" x 0.1" square quasi-isotropic CFRP laminates, 2 sensors
- Lamb wave tests performed in pulse-echo mode at 100kHz
- 3 damage modes investigated with 4 levels of severity for each
- 100 pulse-echo tests per configuration, total 9000 data sets
 - > 1 sensor for each damage type was designated as the "training node" and all data collected was used to train PR algorithm
- other sensors on same and all separate plates were "testing nodes" used to collect experimental data for subsequent predictions IWSHM Conference 2007

M.E.T.I.-Disk 3 Digital SHM Nodes

- Monitoring & Evaluation Technology Integration
 - > concentric piezoceramic sensor/actuator elements
 - rigid-flex technology used for ADC & DAC
 - > mini-USB connector for power and data transfer
 - > 1" diameter urethane encapsulation for durability
- Digital SHM infrastructure (TRL 7 demonstrated)
 - > Lamb wave, modal analysis, AE capable
 - > 2 channel 1MHz 16-bit ADC & 1MS/s 8-bit DAC
 - > 20Vpp drive voltage, programmable gains
 - > daisy-chain compatible using CAN bus
- Point-of-Measurement (POM) sensing
 - RAM enables local filtering, logic & computation
 - > digitizing at POM minimizes EMI introduction
- digital bus requires less cabling then analog IWSHM Conference 2007
 MDC Proprietary

Experimental Results

- Representative raw voltage versus time for center-drilled hole
 - > compares signals from the undamaged plate with most severe $\frac{1}{2}$ " hole
 - visually signals appear nearly identical in the time domain
- 16 total features were extracted from 3-domains
- Both ANOVA & PCA-based selection approaches investigated

Pattern Recognition Results

PREDICTED	No Damage		Drilled Hole			Delamination			Imp act					
ACTUAL		ND	1 _{/32} "	1/3"	*/4"	1/2"	1/4"	1/2"	1"	1.5"	4"	8"	16"	32"
No Damage	ND	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Drilled Hole	1 _{/32} "	0%	86 %	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	1/ _S "	0%	53%	47%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	*4"	0%	0%	0%	44%	56%	0%	0%	0%	0%	0%	0%	0%	0%
	*⁄2"	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%
Delamination	*//"	0%	0%	0%	0%	0%	99 %	1%	0%	0%	0%	0%	0%	0%
	1/2"	0%	0%	0%	0%	0%	58%	30 %	12%	0%	0%	0%	0%	0%
	1"	0%	0%	0%	0%	0%	1%	9%	58 %	32%	0%	0%	0%	0%
	1.5"	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%
Imp act	4"	0%	0%	0%	0%	0%	0%	0%	0%	0%	76%	23%	1%	0%
	8"	0%	0%	0%	0%	0%	0%	0%	0%	0%	6%	33%	61%	0%
	16"	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	98%	0%
	32"	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	14%	86%

- Confusion matrix exhibits accuracies for KNN predictions
- 100% accuracy damage presence & type classification
- 77% severity classification, 99.9% including adjacent cells

Conclusions

- Results of PR-based methodology have been very successful
 - > obtained using an optimized K-Nearest Neighbor code without logic
 - > **100%** presence accuracy without any false positives or missed damage
 - > 100% type of damage accuracy without any mis-classifications
 - > 99.9% severity prediction including adjacent levels (77% without)
- Sufficient results for technician to make a repair decision
 - > achieve "adjacent" results by intelligently selecting severity boundaries
 - > accuracy would improve with additional training data
- Achieved using separate plates for training and testing
 - > broad implications for feasibility of eventual commercial implementation
 - single validated training data set needs to be deployed for entire fleet
 - > can account for variability in sensor fabrication and placement
 - > accommodate "real" damage types such as delamination and impact

Acknowledgments

- This research was sponsored by the Air Force Research Laboratory Materials and Manufacturing Directorate (AFRL/ML)
 - SBIR Phase I award FA8650-06-M-5026
 - "Damage Identification Algorithms for Composite Structures"
- AFRL program managers:
 - Dr. Richard Hall
 - > 2ndLt William Bridges

