

Hybrid Coherent/Incoherent Beam Forming

Diagnostic Approach to Naval Assets

Dr. Seth S. Kessler & Dr. Eric Flynn Metis Design Corporation

Professor Michael Todd University of California San Diego

10 Canal Park • Cambridge, MA 02141 • 617.661.5616 • http://www.metisdesign.com

Guided Wave-Based SHM Methods

- Form of elastic perturbation that propagates in a solid medium
 - best damage size & detection range to sensor area ratio
 - > sensitivity and range scales with input power level (with limitations)
 - > advantages for detecting/characterizing local damage over large areas
- Research utilizes concentric piezoelectric transducers
 - central actuator emits omnidirectional narrowband excitation
 - > surrounding 6 sensors record resulting echo response
 - precise position enables the collection of relative phase information

© 2011 Metis Design Corporation

IWSHM '11

Motivations: Sensor Density

- Traditional methods need high sensor density for good location
 - > pitch-catch measures delays and/or scatter along direct sensor line paths
 - pulse-echo determines reflected radius of damage from TOF
 - ➢ both cases require at least 3 nodes in close proximity to triangulate
- Prediction resolution scales w/sensor array proximity (density)

Pitch-Catch GW Methods

Pulse-Echo GW Methods

Motivations: Wave Velocity

- Complications arise in non-isotropic/homogeneous applications
 - composite & anisotropic materials present velocity ellipses & stars
 - > stiffened regions with ribs or doublers exhibit local acceleration of wave
 - tapered or ply-drop-off regions yield continuously changing velocity
- Prediction resolution scales w/accuracy of wave velocity as $f(\theta)$

Wave acceleration through ribs

© 2011 Metis Design Corporation

IWSHM '11

Ultrasonic Beam Forming

- Present system is analogous to active sonar
 - > each node actuates a narrowband "ping" using central actuator
 - > pulses propagate, reflect and scatter at geometric features & damage
 - ➤ response sensed by 6 local sensing elements
- In traditional active sonar, bearing is determined by:
 - > physically arranging array to maximize its sensitivity in one direction, then mechanically orientate array to scan multiple directions
 - artificially introduce delays in acquired, digitized responses to electronically steer array through a processes known as beam forming
- For SHM latter approach has two distinct advantages
 - > position of the array elements can be fixed so there are no moving parts
 - > single node can simultaneously scan for damage in every direction

Incoherent Beam Forming

- Where relative phase velocity is different & unknown between transducer pairs incoherent beam forming must be used
- *Envelopes* of waveforms must be summed together to eliminate the dependence on phase, otherwise risk:
 - > destructively interfering at the true location of damage
 - > constructively interfering away from damage due to phase mismatches
- If baseline-subtracted waveform from each transducer pair m according to its complex analytic signal is w_{nm}(t), then statistic for incoherent detector for damage at x reduces to:

$$T_{\mathrm{I}}(\boldsymbol{x}) = \sum_{m=1}^{M} \left| w_{m}(t - \tau(m, \boldsymbol{x})) \right|$$

where $\tau(m, x)$ is the time of flight from transducer *m* pair to *x*

Coherent Beam Forming

- If relative phase velocity between transducer pairs is the same, delayed waveforms can be combined without enveloping
 - > summation tends to destructively combine at all locations except damage
 - ➢ for narrowband signals, time delays are substituted by faster phase shifts
- For average phase velocities along paths to each region of the structure to be same, transducers must be very closely spaced
 - less than a characteristic interrogation wavelength apart
 - Imits coverage of the structure for a single transducer pair
- Statistic for coherent detector can be expressed as

$$T_{\rm C}(\boldsymbol{x}) = \left| \sum_{m=1}^{M} w_m(t - \tau(m, \boldsymbol{x})) \right|$$

where magnitude is taken after summation rather than before

Hybrid Beam Forming

- Hybrid approach enables both effective imaging & [effective coverage of large areas
 - across transducers in each node, average phase velocity is roughly equal, allowing for coherent beam forming
 - node to node, average phase velocity is generally not equal, scattered signals must be combined incoherently

Coherent

© 2011 Metis Design Corporation

IWSHM '11

SHM System Installation

© 2011 Metis Design Corporation

IWSHM '11

Data Analysis & Reconstruction

Each node processes phase-coherent, location independent "sonar-scan"

color represents # of standard deviations above mean of damage-free data © 2011 Metis Design Corporation IWSHM '11

Image Processing I

Image Processing II

Image Processing III

* Only if applicable

Results for Test Case 1

© 2011 Metis Design Corporation

metis design

Results for Test Case 2

Results for Test Case 3 (Weighted)

Summary

- Hybrid coherent/incoherent beam forming approach enables
 both effective imaging & effective coverage of large areas
 - \succ coherent across transducers in each node, average phase velocity \cong
 - ➤ incoherent node to node, average phase velocity ≠
- Method provides path to reliable & efficient damage location detection for large-scale complex composite structures
 - ➤ requires minimum sensor density
 - > requires no material properties or structural configuration information
- Future work
 - > embed algorithms within FPGA for digital sonar output
 - > couple method with damage characterization algorithms (type)
 - > explore diagnostic to prognostic link further

Acknowledgments

- This research was sponsored by SBIR/STTR funding
 - ONR contract N00014-10-M-0301 "Sensing Optimization & Algorithms for Visualization of Ship Hull Structural Health Monitoring Data" under STTR topic N10-T042 in collaboration with UCSD
 - AFOSR contract FA9550-05-C-0024 "Intelligent Multi-Sensing Structural Health Monitoring Infrastructure" under STTR topic AF03-T017 in collaboration with MIT
 - AFRL contract FA8650-08-C-3860 "Model Augmented Pattern Recognition for SHM & IntelliConnector HS (MD7)" under SBIR topic AF06-097
- University Collaborators
 - Professor Michael Todd from UCSD
 - Professor Brian Wardle from MIT