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‘Advanced Composites & CNTs
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Carbon Nano-Tube (CNT) laminates are a natural progression for aerospace

composites due to their superior specific strength & stiffness
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‘Fabrication of Structured CNTs esien
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 MIT patented novel CNT fabrication processes
» CNTs grown aligned directly on fibers or on substrate to be transferred
» good alignment, dispersion, adhesion & yields high CNT volume fraction

« Atmospheric pressure chemical vapor deposition (CVD)
> self-aligned morphology 101°-10Y/cm? of continuous CNTs (7-10 nm OD)
» rapid forest growth of > 2 microns/second (up to 5 mm long)
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“‘Fuzzy Fiber” Laminates ) -
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“‘Nano-Stitched” Prepregd B2esien

“Nanostitching”
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 Grow aligned CNTs on high-temperature substrate
 Transplant CNTs to composite at low temperature
* Process the enhanced composite normally
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CNT-based SHM
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Motivation For CNT-based SHM
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« SHM improves reliablility, safety & readiness @ reduced costs

» sensors & cables add weight as well as durability & EMI concerns
» scaling SHM for large-area coverage has presented challenges

* Advantages of proposed CNT-based SHM methodology
» sensing elements actually improve specific strength/stiffness of structure
» damage alters CNT links around affected zone, impacts resistivity
» surface & sub-surface damage images produced in post-processing
» simple to scale over large structure, maintains good local resolution

5 -
Tradltlonal SHM &.{-%__ CNT-based SHM
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‘SHI\/I Experimental Setup B esien
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 FFRP laminates fabricated
» alumina fiber satin-weave cloth dipped in solution of 50 mM iron nitrate
» CNTs grow radially aligned 20-50 um with modified thermal CVD method
» 2 plies stacked by hand layup, infused with RTM-6 for 12-hour RT cure
» ~50% fiber volume fraction & ~ 2% CNT (115 x 25 x 2 mm)

« Silver-ink electrodes applied w/masked silk-screening process
» direct-write (DW) electrode grids applied similar to LCD technology
» 8 x 32 traces 1.5 mm wide, all traces spaced by 1.5 mm

» In-plane & through-thickness resistance measurements collected
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[In-plane Resistance Changes
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* No visible damage was present in any of these cases
» nearly linear increase in % resistance change with impact energy
» < 1% change in resistance away from impact zone

« Appeared relatively localized to the actual impacted region
» 15 ft-Ibs impact caused ~10-20% changes
» 30 ft-lbs impact caused ~20-30% changes
» 45 ft-lbs impact caused ~40-60% changes
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[Through-Thickness Changes
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e Same trends observed for in-plane vs through-thickness results
» witness specimen testing indicated complete fracture at 50-60 ft-lbs
» no visible micro-cracking until failure

« Appeared to effect width in impact region relatively uniformly
» 15 ft-Ibs impact caused ~2-4% changes
» 30 ft-lbs impact caused ~4-8% changes
» 45 ft-lbs impact caused ~8-10% changes
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‘NDE Approaches
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 Schemes being explored for NDE & Quality Control

» acoustic emission (AE) measuring dynamic piezoresisive changes
» enhanced penetrating thermographic NDE with applied voltage

« Same hardware & flex frame can be used to measure dynamic
resistance changes or self-induce heating
» Initial “pencil-tap” experiments verifies that AE can be detected
> Initial thermographs demonstrate method feasibility
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‘Motivation For CNT-based IPS
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* Goal to develop a multi-role system for composite aerosurfaces
» detection of presence of ice on surface

» removal of ice and/or prevention of ice (re)formation
» detection/characterization of structural damage

e Current approaches provides high false positive & failure rates

« CNT-based IPS to produce robust, reliable integrated solution
» heating/sensing elements are structural ¥
» solid state (no moving parts)
» conformal (light & low profile)
» uniform surface coverage
» efficient closed-loop feedback possible
» can improve impact resistance
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‘Proof-of-Concept EXperiments

" K-type thermocouple measuring
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[Proof-of-Concept Ice Protection
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e Anti-lcing @ 4 W input (~2 kW/m?)
» without water ~30 °C difference in CNT asymptotic temperature

» able to maintain sample temperature above freezing with large margin
» visual confirmation that ice did not form

e De-Ilcing @ 4 W input (-2 kW/m?)
» asymptotic values only a function of power regardless of water/ice
» time to asymptote only a function of water/ice regardless of power level
» higher power level provide steeper slope through 0°C (de-ice quicker)

e |ce-Detection @ 4 W input (~2 kW/m?)
» while heating with water, distinct phase-related slopes
» effective heat capacity of melting ice
» uses anti/de-icing setup without any additional electrodes

© 2011 Metis Design Corporation IWSHM 2011 15



Ee-lcing & Anti-Icing

metis design

Temperature versus time I"ii
25
20
15
O
® 10 Antiici
- nti—icing N 5
?E started 1 kwim
0
Q 3
-
®
= 0 Freezing —_—
-5
Deicing ,
starteq 2 KW/M
-30 0 30 60 90

Time — deicing start time (min)

© 2011 Metis Design Corporation IWSHM 2011 16



‘ Benefits of CNT Deicing Layer B esier
« Quasi-uniform resistive heating across large areas Mir
« Effective heat distribution for large areas

« Tunable resistivity (material property) for optimal power setting

Current deicing design
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Optimal Resistance for Max Power

If R small, current limited, and thus Power = RI__.2 (linear)

If R large, voltage limited, and thus Power =V
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‘Ice-Detection Formulation

Temperature versus time
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» constant current applied to sample for fixed temperature recording time
» exponential temperature rise (linear data fit), compared to no-ice case

« \ery repeatable results

» shallower slope correlates to more ice on specimen
» data consistent for multiple detection temperatures
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[Summary
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» Proof-of-concepts for CNT-based SHM & IPS demonstrated
» Reliable — solid state, structural elements, durability & longevity

» Minimal impact — low mass & low profile
» Integrated solution — ice-detection & de-icing + damage detection & NDE

e CNT-based SHM
» LCD inspired design for in-plane and through-thickness detection
» damage affects CNT-links, can measure resistivity changes
» resolution defined by grid spacing; easily modified/expanded

e CNT-based IPS

> anti-icing @ ~1 kW/m? to maintain blade temperature ~5 °C
> de-icing @ ~5 kW/m? , ~2 min from ~-15 °C (not including gravity assist)
» Ice-detection in seconds (faster with faster/finer DAQ)
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[Continuing Research
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e CNT-based SHM system (AFOSR Phase Il funding)

» measure structural & multi-functional properties for CFRP FFRP
» explore various electroding strategies

» analytical models to simulate system, parametric iteration

» find trade between detection resolution & electrode spacing

» compensation algorithms for temperature & loading

» demonstrate on UAV wing/tail section

« CNT-based IPS system (NAVAIR Phase |l funding)

» determine electrode spacing versus heating efficiency

» design of laminate morphology for surface heating

» development of hardware for deicing and ice detection
» fabrication & demonstration of BAMS leading edge IPS
» Ice-tunnel testing
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