Probability of Detection Assessment for a Guided Wave Structural Health Monitoring System

Seth S. Kessler, Ph.D. | Gregory Jarmer, Ph.D. 1 September 2015 | Metis Design Corporation

structural health monitoring multi-functional materials lean enterprise solutions

205 Portland St • Boston, MA 02114 • 617.447.2172 • http://www.metisdesign.com

Damage Tolerant Design & Probability of Detection

- Damage tolerant approach common for DoD/commercial design
 - Requires definition of minimum detectable flaw size
 - Requires inspection interval set to find minimum flaw with safety factor
- a_{90/95} is flaw size found 90% of the time with 95% confidence
 MIL-HDBK 1823A establishes guidelines for NDE reliability assessment
 - > Probability of Detection (PoD) method presented to determine $a_{90/95}$

PoD for Structural Health Monitoring

- Desire to establish accepted approach to capture PoD for SHM
 - > Based on MIL-HDBK-1823A as written, not historical implementations
 - Accommodate SHM while maintaining overall reliability standards
 - > Exploit models & advanced statistical approaches to minimize specimens
- SHM methods differ from NDE methods
 - > SHM sensors are generally integrated into a structure permanently
 - > SHM monitors an area, not a point: PoD a function of distance/orientation
 - > Sources of variability: inspectors & placement vs bonding & temperature
- Close examination of why $a_{90/95}$ is the traditional benchmark
 - > Allows for high reliability with maximum inspection interval
 - > Designed to maximize availability, minimize tear-down/inspection costs
 - > SHM allows for repeated inspection at no cost, can $a_{xx/95}$ be used instead?
 - Independence/dependence of inspections will be the deciding factor

PoD Experiment Design

- Aerospace structures have many sources of variability
 - Uncertainty in response due to damage
 - Fatigue crack(s) size and orientation
 - > Uncertainty in response due to geometry
 - Change in contact condition at joints
 - Propagation paths can change in thickness
 - Bolt and fastener torque at connections

- > Uncertainty in response due to operational environment
 - Strain condition (payload), temperature, humidity (absorption in composite)
- > Uncertainty in response due to sensor bond line degradation
- Group sources of variability
 - Pre-Test Variables: Manufacturing and preparation of specimen
 - Test Variables: Geometry and operational environment
- Isolate effect of variables through controlled building-block

© 2015 Metis Design Corporation

IWSHM 2015 4 of 20

Pre-Test Variables

• Variation due to manufacturing & preparation of specimen

Variable	Operation Range	Control Method	Effect
Part Fabrication	± 0.005"	Machining tolerance	Random
(LxWxH) Dimension	±0.005"	-	-
Starter Notch	±0.005"	-	-
Bonding of Array	-	Installation Jig	Random
Transducer Response (D31)	±30%	Random Selection From Lot	-
Position	±0.05"	Bonding Jig	-
Adhesive Bond Line	±0.001"	Impedance Tests	Random

- Variables explored before specimens are mechanically fatigued
- Adhesive bondline is anticipated as most important variable
 - > Installation kit to minimize variability (tool + triggerbond + 2-part epoxy)

IWSHM 2015 5 of 20

Test Variables

• Variation due to geometry & operational environment

Variable	Operation Range	Control Method
Temperature	32°F to 100°F	Environmental Chamber
Subset #1	80°F	-
Subset #2	85°F	-
Subset #N	TBD⁰F	-
Humidity	Absolute scale	Environmental Chamber
Crack Size	0.015 to 0.22 inches	4 Point Bending
13 Test Specimens	-	Digital Image
Strain State	Weight on Wheels	Unload/Constant
Boundary Conditions	NA	Simply Supported
SNR Calibration	-	DAQ Setting
Frequency	10-500 kHz	-
Interval	TBD	-
Number of Averages	2 [×] = 256,512,1024	-
ADC Gain	10,20,50	-
Inspection Process		DAQ Setting
Continuous and at each crack size	During Fatigue and at set crack	
interval	sizes	-

• Operating range for inspection is representative

> Propose stain condition: Weight on wheels

Propose temperature range: 32 to 100°F

Outside of this regime do not inspect for damage

- Test values limited by available environmental chamber

© 2015 Metis Design Corporation

Sub-Specimen #1: 4-Point Bend Test

- Objective: Characterize sensor variability & wave mode scattering
 - Sensor bonded on each end for pitch-catch (PC) & pulse-echo (PE)
 - Can control operational environment with reasonable tolerances
 - > Experience controlling fatigue crack growth in bending from edge notch

IWSHM 2015 7 of 20

Sub-Specimen #2: Attenuation & Scattering

- Objective: Characterize attenuation & scattering from defect
 - > Measure scattering from 0°, 45°, 90°, 225°, 270°, 315° with radius = 6"
 - Measure attenuation from at 6", 9" & 12"
 - > Expect to repeat test 3 times under 3 temperature conditions

Course PoD of Al/Honeycomb Panel with Notch

Course PoD for Al Plate w/Missing Rivets on Rib

Minimizing Required Test Matrix for PoD

- Need "sufficient" # of specimens to fit PoD & determine $a_{90/95}$
 - > HDBK essentially says to "consult a statistician"
 - > Suggests 40-60 tests with equal number of undamaged specimens
- SHM relies on permanent installation
 - > Reducing required sample size is driven by cost of disposable components
 - > Also not practical to test many complex representative test articles
- Simulation methods exist to determine optimal sample size*
 - Monte Carlo based algorithm
 - > Determines distribution of $a_{90/95}$ values & optimal # of test specimens

*Song, Xiaolan, Pradipta Sarkar, and William Veronesi. "Virtual Inspection: Optimum Sample Size for POD Experiment." *Quality Engineering* 14, no. 4 (June 18, 2002): 623–44. doi:10.1081/QEN-120003563.

Determining Optimal PoD Test Matrix

- Simulation Inputs:
 - ➢ Fixed a₉₀ = 0.1"
 - ➢ Fixed a₁₀ = 0.015"
- Case #1
 - ➤ Desired a_{90/95} = 0.25"
 - Resulting sample size n = 13
- Case #2
 - ➤ Desired a_{90/95} = 0.15"
 - Resulting sample size n = 42
- Propose Specimens

Specimen Name	Quantity
#1: 4 Point Bend Test	13
#2 : Attenuation and Scattering	3
#3: I Beam	n
#4: I Beam with Ribs	2
#5 Final Specimen: I-Beam w/ribs & splice plate	1

Reduced Inspection Intervals with SHM

- SHM has no cost for reducing the inspection interval
 - Assuming independence, <u>overall effective</u> probability of detecting a crack increases with more inspections; allows for reduced instantaneous PoD
 - > Example of independent inspections:

- False alarm rate repercussions will be the major driving factor
- If dependent, equivalent PoD function of given operational state

Independence of Repeated Inspections

• General consensus is that 2 NDE inspections taken a year apart are considered independent (how do we know if this is true?)

• Independence: a function of interval/operational environment

Boundary conditions, strain state, temperature all vary over interval

Operational Environment

 Need to statistically test for independence between PoD and change in operational environment

Chi Square Independence Test

- Hypothesis test to determine if two variables are independent
 - Measures how well an observed distribution of data fits with the distribution that is expected if the variables are independent
- Test if PoD is independent of temperature
 - > Test article is a metallic plate with honeycomb core
 - Interrogate notch in pulse echo, damage 0.25" notch
 - ➤ 500 runs over several days

Chi Square Independence Test Matrix

- Temperature varied all other parameters constant
- Using observed data calculate expected data assuming independence

$$P(A)P(B) = P(A \cap B)$$

Compare observed and expected values

$$\chi^{2} = \sum \frac{\left(Observed - Expected\right)^{2}}{Expected}$$

• Chi square value used in hypothesis test

 $\ensuremath{\mathbb{C}}$ 2015 Metis Design Corporation

Chi Square Independence Test Example

- Chi square test statistic has a Chi square probability distribution
 - Perform hypothesis test
 - -Null hypothesis: PoD for test run and temperature are not associated
 - Alternative hypothesis: PoD for test run and temperature are associated
 - Choose power of test with significance level = 0.01
 - This sets the threshold $\$ value
 - If test statistic > threshold: Reject null hypothesis
 - If test statistic < threshold: Do not reject the null hypothesis</p>
 - -Threshold value = 11.3
 - Test statistic = 10.1

$$\chi^{2} = \sum \frac{\left(Observed - Expected\right)^{2}}{Expected} = 10.1$$

• Do not reject the null hypothesis

Test # & temperature are not correlated

Scaling Functions & Model-Assisted PoD

- Models necessary for efficient/comprehensive PoD calculation
 - Experimentally determining PoD curves as a function of damage size, orientation, distance not practical
- Form theoretical models & calibrate empirically

Signal processing methods derived from physics based model

- PoD driven by Energy-to-Noise ratio of scattered signal
 - Use scaling functions to calibrate PoD curves
 - > Function of distance, orientation, and size of damage

IWSHM 2015 18 of 20

Summary

- Differentiation between SHM & NDI for reliability assessment
 - > SHM permanently installed at a point to cover an area, cost driver
 - Different variables effect PoD (temperature), no operator
- Proposed building block testing to isolate sources of variability
 - Increase complexity of each subsequent sub-specimen
 - Reduce physical test matrix size with models to minimize cost
- Repeated inspection is key to maintaining effective reliability
 - > Impractical to maintain PoD of $a_{90/95}$ for entire SHM inspection range
 - \succ Can reduce instantaneous test below $a_{90/95}$ if overall reliability maintained
 - Independence of repeated results will determine if this is allowed
 - > Propose Chi Square method to test for independence

Model-assisted PoD to accommodate flaw range & orientation

© 2015 Metis Design Corporation

IWSHM 2015 19 of 20

Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation 617-447-2172 x203 • 617-308-6743 (cell) • skessler@metisdesign.com

© 2015 Metis Design Corporation

IWSHM 2015 20 of 20