DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited (AFRL-2023-3999)

Covariance of Limit Defining Pairs (CLDP) A Novel Approach to Establishing Detection Sensitivity for Structural Health Monitoring Data

> Seth S. Kessler, Ph.D. | Metis Design Corporation Christine M. Schubert Kabban, Ph.D. | Air Force Institute of Technology

structural health monitoring nanoengineered materials multifunctional structures

205 Portland St • Boston, MA 02114 • 617.447.2172 • http://www.metisdesign.com

Probability of Detection (POD)

- USAF-funded effort partially devoted to POD statistics for SHM
 - > MIL-HDBK-1823A lays out traditional statistical analysis for NDI methods
 - Key metric is a_{90/95} smallest flaw w/90% probability & 95% confidence
 - Suggest at least 60 independent specimens are tested; 1 point per test
- Traditional POD approaches are challenging for SHM
 - > For NDI, specimens are cracked, then inspector manually inspects each
 - > SHM sensors are permanently installed, disposable after each test
 - > 60+ unique tests generally impractical for SHM due to sensor expense
- Leveraging benefits of SHM
 - > As opposed to NDI, after installation additional data points are "free"
 - > However MH1823A only allows 1 point per test due to data independence
 - > Must develop efficient statistical approach that accounts for dependance

Witness Integrity Sensor Platform (WISP)

- Architecture for facilitating condition-based maintenance (CBM)
 - Miniature (~10 cm²) & lightweight (~10 g) distributed acquisition
 - Completely passive electronics except when transferring data
 - Options to integrate/retrofit without any ties into asset power/data
- WISP hardware compatible with a wide variety of sensors
 - Standard COTS sensors for strain, temperature, humidity, etc.
 - Advanced nanoengineered sensors
 - Fatigue crack gauge
 - Corrosive & erosive potential gauges

IWSHM 2023 3 of 20

WISP Fatigue Crack Gauge

- Crack gauge physical characteristics
 - ➢ Form-factor: 12.5 mm square gauge area (not a limitation), ~200 µm thick
 - Mass: ~10 mg/cm², can be installed with a bend radius up to 5mm
 - Built-in self-calibration & self-compensation element
- Crack detection mechanism
 - > Laminated CNT assembly bonds to structure with Loctite 415 (30 sec cure)
 - CNT network electrical resistance changes proportional to crack length
 - > Completely passive sensor, crack "encoded" even when no power applied

IWSHM 2023 4 of 20

WISP Crack Gauge Resistance vs Measured Crack

IWSHM 2023 5 of 20

WISP Crack Gauge Detection Sensitivity Study

WISP Fatigue Crack Growth Predictions

IWSHM 2023 6 of 20

WISP Crack Gauge Detection Sensitivity Results

Damage Metric at each Marker Band

- 60 specimens instrumented & tested through 10,000 cycles
- **100 WISP** points collected corresponding to marker band lines
- $[(R/R_0)-1]*10^{6}$ damage metric for statistical analysis (REM)
- **Offset crack length value used (only portion beneath gauge area)**

Traditional Hit/Miss Analysis

- Traditional Hit/Miss analysis from MH1823A initially used
 - Uses binary response of WISP signal above/below threshold value
 - > Logistic regression model fit to data to plot POD vs crack length
 - Confidence intervals calculated using Firth's Method
- MH1823A only allows for 1 data point per specimen
 - Code written to extract 1 random point per specimen to calculate POD stats
 - Code iterated 1000 times to generate mean/stdev on POD stats
 - > Illustrates traditional approach can be poorly behaved , luck-of-the-draw

		a ₉₀ (m	m)		a _{90/95} (mm)						
#	Mean	StDev	Min	Max	Mean	StDev	Min	Max			
60	0.23	0.05	0.08	0.41	0.45	0.10	0.24	1.25			

- Subsequently investigated performance with fewer specimens
 - Code written to randomly select specimen subset of size n
 - Code iterated 1000 times to generate mean/stdev on POD stats for size n

Traditional Hit/Miss Results (1000 iterations)

CLDP Modified Hit/Miss Analysis

- <u>Covariance of Limit Defining Pairs (CLDP)</u>
 - > Methodology for consistent selection of samples used in statistical analysis
 - Largest "miss" such that all smaller flaws never detected for that specimen
 - -Smallest "hit" such that all larger flaws always detected for that specimen
 - Hit/Miss analysis using 1(1B1A) or 2(2B2A) pairs from each specimen
 - Covariance term added into hit/miss analysis to account for dependance

IWSHM 2023 10 of 20

CLDP 1B1A Analysis Results (1000 iterations)

© 2023 Metis Design Corporation

IWSHM 2023 11 of 20

CLDP 2B2A Analysis Results (1000 iterations)

© 2023 Metis Design Corporation

IWSHM 2023 12 of 20

Comparison of All Analyses

- All 3 POD curves are similar
 - CPLD improves confidence bound
 - Tighter & more reasonable shape
- CLDP 2B2A has >95% convergence @ 10 samples
- CLDP 2B2A is only approach with stable a_{90/95} throughout

© 2023 Metis Design Corporation

IWSHM 2023 13 of 20

Efficiency of CLDP Approach

- Traditionally points distributed amongst desired detection range
 - Includes points with large obvious flaws with 100% detection
 - > Includes points with very small flaws with 0% detection
 - Includes false positives where sensor "hits" due to noise, adds to variability
- CLDP is more efficient than traditional sample selection
 - > All points are taken right at threshold value to maximize value to regression
 - > Implicit that earlier data is 0% & later data is 100% POD, no false positives
 - > Valid but impractical for NDI because quantity of manual inspection
- Comparison of results demonstrates validity of CLDP
 - Similar values for all POD stats, but CLDP has much less variability
 - CLDP mean & StDev much more stable for fewer specimen subsets
 - CLDP also improves convergence when using few specimens

Testing Fewer Physical Specimens with CLDP

- CLDP analysis performed for full 60 specimen of new SHM sensor
 - Generate table of POD stats for simulated reduced datasets
 - Penalty factor calculated to be applied when using reduced dataset later (2σ a_{90/95} reduced dataset) + (a_{90/95} full dataset) - (mean a_{90/95} reduced dataset)
 - > Can generate penalized POD curve by fitting penalized $a_{X/95}$ values
 - > Must also consider potential for non-convergence, fix with additional tests

IWSHM 2023 15 of 20

Resolving Non-Convergent Cases

- Upper confidence bound considered "non-convergent" when value beyond tested data
- Usually occurs when substantial overlap of hit/miss points
- 35 of 1000 were non-convergent for 20-specimen subset (3.5%)
- Can collect additional pairs to fix

CLDP 2B2A Analysis	a ₉₀				a _{90/95}				
	Mean	StDev	Min	Max	Mean	StDev	Min	Max	
60-specimen results	0.27	-	-	-	0.32	-	-	-	
20-specimen subset, non-convergent datapoints removed	0.27	0.05	0.11	0.40	0.39	0.11	0.15	1.00	
20 iterations of non-convergent case, 1 new LDP, 3 converge	0.25	0.01	0.24	0.27	0.33	0.02	0.32	0.36	
20 iterations of non-convergent case, 2 new LDP, 11 converge	0.24	0.01	0.23	0.24	0.31	0.03	0.25	0.36	
20 iterations of non-convergent case, 5 new LDP, 16 converge	0.25	0.02	0.22	0.28	0.32	0.04	0.25	0.37	
20 iterations of non-convergent case, 20 new LDP, 19 converge	0.24	0.03	0.17	0.28	0.30	0.05	0.19	0.37	

Summary

- Sought alternative means for evaluating POD of SHM methods
 - > Minimize necessary physical experiments, maintain statistical equivalence
 - Minimize & appropriately account for dependent data
- Focus on WISP fatigue crack gauge
 - > Lightweight CNT-based sensor not susceptible to corrosion or fatigue
 - > Hot-spot sensor: failure critical or known flaw locations
- CLDP approach provides efficient account of detection capability
 - > More SHM data collected, only use most valuable points for analysis
 - > Conventional hit/miss analysis, include covariance term for dependence
 - Demonstrated validity of CLDP approach using 60 WISP FCG experiments
 - > Proposed methodology for further reducing experiments with penalty factor

Overall AFWERX Program

- Design of Experiment (DOE)
 - Included temperature, strain, humidity, pressure, ageing, fatigue, hardware
 - Demonstrated that compensation method eliminates all external variables
- Detection sensitivity study
 MIL-HDBK-1823A +CLDP
- Airworthiness testing (MIL-STD-810)
 -65°C to 125°C temperature testing
 shock/vibration/acceleration up to 20g
 Chemical contamination exposure
- Flight testing on F-15 (Aug–Dec 2023)
 - Survived 30x 8g maneuvers!

Acknowledgements

- USAF: Eric Lindgren, Daniel Bavaro, Tyler Gruters, Dave Currie
- AFIT: Prof. Christine Schubert Kabban
- Metis Design: Mike Borgen, Chris Dunn, Greg Jarmer
- Analog Devices: Yosi Stein, Mahana Malepati
- TRI Austin: David Forsyth
- Iowa State: Prof. Bill Meeker

This research was conducted at the Metis Design Corporation, Boston MA. It was funded by the U.S. Government under Air Force SBIR Agreement FA8649-20-9-9068. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies of the U.S. Government

Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation +1 617-661-5616 • skessler@metisdesign.com

© 2023 Metis Design Corporation

IWSHM 2023 20 of 20