PACKAGING OF STRUCTURAL HEALTH MONITORING COMPONENTS

Seth S. Kessler
Metis Design Corporation

S. Mark Spearing
Massachusetts Institute of Technology
Background

• Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse “changes” in a structure in order to reduce life-cycle costs and improve reliability.

• Most new vehicles utilize advanced composite materials due to their high specific strength and stiffness.

• Different areas of concern for NDE
 - metals: corrosion and fatigue vs composites: delamination and impact
 - damage below the visible surface is most important for composites

• Integration issues
 - retrofit SHM systems into existing vehicles to monitor damage growth
 - integrate SHM networks into new vehicle designs to guide inspections and dictate need-based maintenance and repair
Sensor Study Conclusions

- Piezoelectric materials are ideal for SHM applications
 - can be used as actuators and sensors for a variety of NDE methods
 - light, low cost, low power, flexible, can be deposited

- Frequency response methods
 - useful detection sensitivity to global damage
 - can be used for first or last line of defense

- Lamb wave methods
 - sensitive to local presence of many types of damage
 - potential for triangulation of damage location and shape

- Recommendations for SHM system architecture
 - design based upon analytical results and experimental tuning
 - use of multiple detection methods to gain maximum information
Lamb Wave Methods

- Form of elastic perturbation that propagates in a solid medium
 - actuation parameters determined from governing equations
 - excite A_0 wave for long travel distances and to minimize clutter

- Damage can be identified in several ways
 - group velocity approximately $\propto (E/\rho)^{1/2}$, damage slows down waves
 - reflected wave from damage can be used to determine locations

- Present research utilizes piezoelectric actuators/sensors to detect energy present in transmitted and reflected waves
Recent Lamb Wave Research

• Optimization of Lamb wave testing procedure
 – selection of best actuating/sensing materials, adhesives, electrodes
 – more efficient actuating/sensing scheme for transmission and reflection
 – increased reliability, robustness and signal strength by 4x

• Algorithm development
 – damage evaluation algorithms in MATLAB using filters and wavelets
 – tuned and validated by a large set of simple test results
 – current software yields report on presence, location, and type of damage

• Test specimen database
 – testing sensors/algorithms on composite plates and sandwich structures
 – several combinations of small and controlled damage still yields measurable effect, the more damage, the more dramatic the results
 – exhibits 83% accuracy, nearly 100% for delamination (over 200 tests)
Original Actuator/Sensor Package

- PZT Sensor
- PZT Actuator
- Electrically conductive adhesive
- Brass shim stock
- Electrically insulative adhesive
- Complete sensor/actuator
Lamb Wave Test Setup

- Tests have been executed via variety of acquisition methods
- Completely portable, simple to use and automated results
- Presently use TDS oscilloscope and Agilent function generator
• SHM is predicated on the ability to integrate sensors
 - system reliability must be increased (sensors do not initiate damage)
 - sensors are sufficiently reliable so that they do not require replacement at intervals less than the economic lifetime of the part being monitoring
 - packaging of sensors is a major consideration

• Packaging must perform multiple functions
 - provide an interface between sensors and structure (e.g. to ensure that Lamb waves generated can be transmitted with minimal power loss)
 - guarantee power and data connections to and from actuators/sensors
 - protect sensors from natural, mechanical and electrical environments, including temperature, moisture, EMI, vibration, strain and impact
 - avoid durability issues for sensors, fatigue and creep
Design Requirements

• Geometric constraints
 ➢ maximum height: ~0.5” (greater tolerance inside, less on aerosurface)
 ➢ maximum diameter: ~1.6” (total volume not to exceed 1 in³)

• Mechanical constraints
 ➢ strain: 2000 microstrain
 ➢ vibration: resonance must be above 66 Hz
 ➢ incidental impact protection

• Environmental constraints
 ➢ moisture: assume always in hot/wet/salty environment
 ➢ temperature: -20°F to 180°F
 ➢ chemical: resistant to fuel, oil, paint, acetone, etc.
 ➢ constant EMI exposure
Device Design

- Packaging challenges broken down into subcomponents
 - electrode design – improve robustness, eliminate solder, reduce EMI
 - encapsulation – impact protection, thermal and moisture resistance
 - mounting scheme – improve durability, strain resistance
 - connection scheme – improve signal strength, strain resistance
Electrode Design

- Kapton/Copper top shield
- Insulating film adhesive layer
- Kapton/Copper electrode
- Conductive film adhesive region
- Insulating film adhesive region
- Piezoelectric actuator and sensor

- Original design used direct solder connections
 - exposed wires were susceptible to EMI
 - mechanically and electrically weak joints (pull out, cold-solders)
 - soldering temperatures could depole piezoelectric wafers
- New copper coated Kapton design eliminates these issues
Encapsulation

- Original design called for epoxy encapsulation
- New “cap” design allows for more flexibility
 - impact resistance
 - moisture sealed
 - space for micro-connectors for wired design
 - space for other electronic components for wireless design
- Environmental protection
 - low absorptivity
 - some thermal protection
 - global EMI protection
- Delrin two-piece design
 - low weight, low cost
 - machined in prototypes
 - injection molded in production
 - removable top for integration, repair

~0.3” ~1.5”
Mounting Scheme

- Original design used thin brass shim with conductive adhesive
- Eliminated conductive path to the structure
- Optimized force imparted to the specimen by the actuator
 - FE model created with parametric values for polyester thickness
 - selected a particular combination of material stiffness and layer thickness
- Bottom layer of insulating adhesive
 - strong, durable
 - cures at room temperature with low pressure
Connection Scheme

- Original design used BNC cables directly soldered to PZT
- New design employs micro-connectors attached to electrodes
 - better conduction of data signal
 - provides cleaner shielding and ground attachments
- Mechanical advantages
 - flanged micro-connector provides strain relief
 - external adaptor provides standard BNC connection
Experimental Testing

- Four levels of configurations tested
 - original design with no modifications
 - new electrode used with original mounting, no cap
 - new mounting scheme used with old soldering method, no cap
 - entire new design, including electrode, mounting and cap
- Tests performed on 10x10” composite plate, original procedure
Baseline Test Results

- Voltage at the near sensor show little difference between the first three configurations, however signal is more than doubled by cap configuration.
- Voltages damped by ~50% at far sensor by configurations that employed the new mounting; far sensor data not as useful anyhow.
Thermal Test Results

- Plate placed in a post-cure oven at 180°F for a period of 24 hours
- Voltage levels for the near sensor generally remained the same, however great increase for the cap configuration, resistivity of micro-connectors
- Signal strength at far sensor slightly increased for all, cap results best
Humidity Test Results

- Plate and sensors placed in chamber, held at 100% humidity for 24 hours
- Little effect from the moisture was observed for any of the configurations
- First three configurations experienced a slight decay in signal at near and far
- The cap configurations experienced a slight increase in signal strength
Electrical Noise Test Results

- Old “brush-style” electric hand drill to simulate electrical noise
- All voltage levels measured remained consistent with the baseline results
- Configurations that used solder method experienced high levels of electrical noise seen as jumps in the signals, new electrode showed reduced noise
- Cap completely eliminated all electrical noise from the sensors
Conclusions

• Overall packaging scheme meets or exceeds requirements
 - new electrode scheme successfully eliminates electrical noise
 - encapsulation protects from moisture, incidental impact, thermal barrier
 - new mounting scheme can tolerate variety of temperatures, high strain
 - micro-connectors provide strain relief, better conduction

• Testing demonstrated features of new design
 - improved baseline results at near sensor for more accuracy, lower power
 - far sensor results lower due to damping by adhesive, not as important
 - tolerant of harsh environmental conditions
 - easier to integrate with structures, more durable

• Volume remaining in cap sufficient to package remaining electronic components for future wireless design
Future Recommended Research

• Currently researching other relevant SHM components
 ➢ thin-film battery
 ➢ recharging system
 ➢ wireless transceiver
 ➢ microprocessor
• Improved algorithms
 ➢ enhanced reliability, reduce number of empirical constants
 ➢ encryption for software distribution
 ➢ testing on more complex aerospace structures
• Commercialize products in near future
 ➢ wired version for low cost implementation
 ➢ wireless version for increased flexibility, reduce complexity
Acknowledgements

• This material is based upon work supported by the National Science Foundation under Award Number: DMI-0320100. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

• The authors would like to further acknowledge:
 - Edward White and Eric Haugse from Boeing
 - Lt Kuenzi and Lt. Sorenson from Hill AFB
 - Neal Harris Phelps from Tinker AFB
 - Alex Gaskin from Warner-Robins AFB